Leon A. Gatys

Learn More
Werner Reichardt Centre for Integrative Neuroscience and Institute of Theoretical Physics, University of Tübingen, Germany Bernstein Center for Computational Neuroscience, Tübingen, Germany Graduate School for Neural Information Processing, Tübingen, Germany Max Planck Institute for Biological Cybernetics, Tübingen, Germany Department of Neuroscience,(More)
Rendering the semantic content of an image in different styles is a difficult image processing task. Arguably, a major limiting factor for previous approaches has been the lack of image representations that explicitly represent semantic information and, thus, allow to separate image content from style. Here we use image representations derived from(More)
Here we introduce a new model of natural textures based on the feature spaces of convolutional neural networks optimised for object recognition. Samples from the model are of high perceptual quality demonstrating the generative power of neural networks trained in a purely discriminative fashion. Within the model, textures are represented by the correlations(More)
Neural Style Transfer has shown very exciting results enabling new forms of image manipulation. Here we extend the existing method beyond the paradigm of transferring global style information between pairs of images. In particular, we introduce control over spatial location, colour information and across spatial scale. We demonstrate how this enhances the(More)
This note presents an extension to the neural artistic style transfer algorithm [2]. The original algorithm transforms an image to have the style of another given image. For example, a photograph can be transformed to have the style of a famous painting. Here we address a potential shortcoming of the original method: the algorithm transfers the colors of(More)
Here we demonstrate that the feature space of random shallow convolutional neural networks (CNNs) can serve as a surprisingly good model of natural textures. Patches from the same texture are consistently classified as being more similar then patches from different textures. Samples synthesized from the model capture spatial correlations on scales much(More)
Here we present a parametric model for dynamic textures. The model is based on spatiotemporal summary statistics computed from the feature representations of a Convolutional Neural Network (CNN) trained on object recognition. We demonstrate how the model can be used to synthesise new samples of dynamic textures and to predict motion in simple movies.
Our visual environment is full of texture-"stuff" like cloth, bark, or gravel as distinct from "things" like dresses, trees, or paths-and humans are adept at perceiving subtle variations in material properties. To investigate image features important for texture perception, we psychophysically compare a recent parametric model of texture appearance(More)
Natural image generation is currently one of the most actively explored fields in Deep Learning. Many approaches, e.g. for state-of-the-art artistic style transfer or natural texture synthesis, rely on the statistics of hierarchical representations in supervisedly trained deep neural networks. It is, however, unclear what aspects of this feature(More)