Leo H. de Graaff

Learn More
The expression of genes encoding enzymes involved in xylan degradation and two endoglucanases involved in cellulose degradation was studied at the mRNA level in the filamentous fungus Aspergillus niger. A strain with a loss-of-function mutation in the xlnR gene encoding the transcriptional activator XlnR and a strain with multiple copies of this gene were(More)
Complementation by transformation of an Aspergillus niger mutant lacking xylanolytic activity led to the isolation of the xlnR gene. The xlnR gene encodes a polypeptide of 875 amino acids capable of forming a zinc binuclear cluster domain with similarity to the zinc clusters of the GAL4 superfamily of transcription factors. The XlnR-binding site(More)
Two cellobiohydrolase-encoding genes, cbhA and cbhB, have been isolated from the filamentous fungus Aspergillus niger. The deduced amino acid sequence shows that CbhB has a modular structure consisting of a fungus-type cellulose-binding domain (CBD) and a catalytic domain separated by a Pro/Ser/Thr-rich linker peptide. CbhA consists only of a catalytic(More)
Screening of an Aspergillus niger differential cDNA library, constructed by subtracting cDNA fragments of a xlnR loss-of-function mutant from wild-type cDNA fragments, resulted in the cloning of the gene encoding D-xylose reductase (xyrA). Northern blot analysis using an A. niger wild-type strain, a xlnR multiple-copy strain and a xlnR loss-of-function(More)
Protein secretion plays an eminent role in cell maintenance and adaptation to the extracellular environment of microorganisms. Although protein secretion is an extremely efficient process in filamentous fungi, the mechanisms underlying protein secretion have remained largely uncharacterized in these organisms. In this study, we analyzed the effects of the(More)
Interactions between bacteria and fungi cover a wide range of incentives, mechanisms and outcomes. The genus Collimonas consists of soil bacteria that are known for their antifungal activity and ability to grow at the expense of living fungi. In non-contact confrontation assays with the fungus Aspergillus niger, Collimonas fungivorans showed accumulation of(More)
The Aspergillus nidulans xlnR gene encodes a Zn(2)Cys(6) transcription activator necessary for the synthesis of the main xylanolytic enzymes, i.e. endo-xylanases X(22), X(24) and X(34), and beta-xilosidase XlnD. Expression of xlnR is not sufficient for induction of genes encoding the xylanolytic complex, the presence of xylose is absolutely required. It has(More)
Using a DNA fragment containing the Aspergillus niger abfB gene as a probe, the homologous Aspergillus nidulans gene, designated abfB, has been cloned from a genomic library containing size-selected HindIII fragments. The nucleotide sequence of the A. nidulans abfB gene shows strong homology with the A. niger abfB, Trichoderma reesei abf-1 and Trichoderma(More)
A novel gene, eglC, encoding an endoglucanase, was cloned from Aspergillus niger. Transcription of eglC is regulated by XlnR, a transcriptional activator that controls the degradation of polysaccharides in plant cell walls. EglC is an 858-amino-acid protein and contains a conserved C-terminal cellulose-binding domain. EglC can be classified in glycoside(More)
The expression of the feruloyl esterase gene faeA, the alpha-glucuronidase gene aguA, the endoxylanase gene xlnB, and the beta-xylosidase gene xlnD from Aspergillus niger on xylose was studied in a wild-type strain and in a CreA mutant. A decrease in expression of all four genes was observed with increasing xylose concentrations in the wild-type strain,(More)