Learn More
GENECLASS2 is a software that computes various genetic assignment criteria to assign or exclude reference populations as the origin of diploid or haploid individuals, as well as of groups of individuals, on the basis of multilocus genotype data. In addition to traditional assignment aims, the program allows the specific task of first-generation migrant(More)
We propose a general formulation of the Bayesian method for assigning individuals to a population among a predetermined set of reference populations using molecular marker information. Compared to previously published methods, ours allows us to consider different types of prior information about allele frequencies by using a Dirichlet prior probability(More)
In this paper, we illustrate experimentally an original real-time replanning scheme and architecture for humanoid robot reactive walking. Based on a dense set of actions, our approach uses a large panel of the humanoid robot capabilities and is particularly well suited for 3D collision avoidance. Indeed A* approaches becomes difficult in such situation,(More)
AFLP and SSR DNA markers were used to construct a linkage map in the coconut (Cocos nucifera L.; 2n = 32) type Rennell Island Tall (RIT). A total of 227 markers were arranged into 16 linkage groups. The total genome length corresponded to 1971 cM for the RIT map, with 5-23 markers per linkage group. QTL analysis for yield characters in two consecutive(More)
Coconut mite (Aceria guerreronis 'Keifer') has become a major threat to Indian coconut (Coçcos nucifera L.) cultivators and the processing industry. Chemical and biological control measures have proved to be costly, ineffective, and ecologically undesirable. Planting mite-resistant coconut cultivars is the most effective method of preventing yield loss and(More)
In this paper, we propose a novel and coherent framework for fast footstep planning for legged robots on a flat ground with 3-D obstacle avoidance. We use swept volume approximations that are computed offline in order to considerably reduce the time spent in collision checking during the online planning phase, in which a rapidly exploring random tree(More)
We illustrate an original real-time replanning scheme experimentally for humanoid robot reactive walking. Footsteps are planned as a sequence of “half-steps” that can be easily integrated with randomized planning methods such as RRT. Combined with an approximation of the volume swept by the robot legs during dynamic walking, our method is able to cope with(More)
  • 1