Lenore L. Dai

Learn More
Single-walled carbon nanotubes have many potential beneficial uses, with additional applications constantly being investigated. Their unique properties, however, create a potential concern regarding toxicity, not only in humans and animals but also in plants. To help develop protocols to determine the effects of nanotubes on plants, we conducted a pilot(More)
Particle mobility, aggregate structure, and the mechanism of aggregate growth at the two-dimensional level have been of long-standing interest. Here, we use solid-stabilized emulsions as a model system to investigate the mobility of charged microparticles at poly(dimethylsiloxane) (oil)-water interfaces using confocal laser scanning microscopy. Remarkably,(More)
We investigate the dynamics of charged microparticles at polydimethylsiloxane (oil)-water interfaces using Pickering emulsions as an experimental template. The mobility of the charged particles depends largely on the viscoelastic properties of the oil phase and the wettability of the solid particles. In addition, we have explored the potential of developing(More)
Emulsions of oil and water stabilized by adsorbed solid particles are known as solid-stabilized emulsions (often referred to as Pickering emulsions). Using confocal microscopy, we have studied the assembly of colloidal-sized polystyrene particles in poly(dimethylsiloxane)-in-water solid-stabilized emulsions. Monodisperse polystyrene particles, when included(More)
We have successfully assembled two-component S-PS/AS-PS (sulfate-treated polystyrene/aldehyde sulfate-treated polystyrene) and three-component S-PS/AS-PS/C-PS (sulfate-treated polystyrene/aldehyde sulfate-treated polystyrene/carboxylate-treated polystyrene) colloidal lattices at poly(dimethylsiloxane)-water interfaces. The colloidal particles assemble into(More)
One interesting aspect of colloidal particles is the formation of colloidal crystals at the 2D and 3D levels. Here we report the dynamics and collapse of colloidal lattices at liquid-liquid interfaces using Pickering emulsions as an experimental template. The colloidal particles oscillate around their equilibrium positions. The short-time diffusion constant(More)
Solid-stabilized emulsions have been used as a model system to investigate the dynamics of charged microparticles with diameters of 1.1 microm at oil-water interfaces. Using confocal microscopy, we investigated the influences of interfacial curvature, cluster size, and temperature on the diffusion of solid particles. Our work suggests that a highly curved(More)
We have studied the self-assembly of hydrophobic nanoparticles at ionic liquid (IL)-water and IL-oil (hexane) interfaces using molecular dynamics (MD) simulations. For the 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF(6)])/water system, the nanoparticles rapidly approached the IL-water interface and equilibrated more into the IL phase although(More)
Combining compliant electrode arrays in open-mesh constructs with hydrogels yields a class of soft actuator, capable of complex, programmable changes in shape. The results include materials strategies, integration approaches, and mechanical/thermal analysis of heater meshes embedded in thermoresponsive poly(N-isopropylacrylamide) (pNIPAM) hydrogels with(More)
Environmentally responsive polystyrene/poly (N-isopropylacrylamide)-gold composite particles are successfully synthesized via a Pickering emulsion polymerization method. It is found that the core-shell and asymmetric structured particles are simultaneously formed during the polymerization. Compared with the core-shell structured composite particles, the(More)