Learn More
In this paper we introduce a new approach for the embedding of linear elastic deformable models. Our technique results in significant improvements in the efficient physically based simulation of highly detailed objects. First, our embedding takes into account topological details, that is, disconnected parts that fall into the same coarse element are(More)
Most deformable object simulators suffer from stability problems caused by material slivers in the cut vicinity. The extended finite element method (XFEM) is a novel approach that uses element enrichment to effectively model discontinuities. In combination with an appropriate mass-lumping technique, XFEM provides a stable simulation regardless of cut(More)
A new approach for the interactive simulation of viscoelastic object cutting is presented. Two synchronized geometrical models at different resolutions are used, both derived from medical images. In contrast with most previous approaches, the blade deforms the object, and cutting occurs once a contact pressure threshold is exceeded. Moreover, we achieve(More)
Real time tissue deformation is an important aspect of interactive virtual reality (VR) environments such as medical trainers. Most approaches in deformable modelling use a fixed space discretization. A surgical trainer requires high plausibility of the deformations especially in the area close to the instrument. As the area of intervention is not known a(More)
The human cytochrome P450 (CYP) enzymes play a major role in the metabolism of endobiotics and numerous xenobiotics including drugs. Therefore it is the standard procedure to test new drug candidates for interactions with CYP enzymes during the preclinical development phase. The purpose of this study was to determine in vitro CYP inhibition potencies of a(More)
Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar. ABSTRACT There is a wide range of virtual reality (VR) applications that benefit from physically based modeling, such as assembly simulation, robotics, training and teaching (e.g., medical, military, sports) and entertainment. The dynamics of rigid bodies is well(More)
Physically based simulation is an indispensable component of many interactive virtual environments. The main challenge of virtual reality applications is the realtime requirement. Advanced simulation methods as, e.g., the finite elements method (FEM) require significant computational power. However, the performance increases due to higher clock speed are(More)
In this paper we present a novel approach for stable interactive cutting of deformable objects in virtual environments. Our method is based on the extended finite elements method, allowing for a modeling of discontinuities without remeshing. As no new elements are created, the impact on simulation performance is minimized. We also propose an appropriate(More)
Real time tissue deformation is an important aspect of interactive virtual reality (VR) environments such as medical trainers. Most approaches in deformable modelling use a fixed space discretization. A surgical trainer requires high plausibility of the deformations especially in the area close to the instrument. As the area of intervention is not known a(More)