Learn More
In nowadays variation-aware IC designs, cell characterizations and SRAM memory yield analysis require many thousands or even millions of repeated SPICE simulations for relatively small nonlinear circuits. In this work, we present a massively parallel SPICE simulator on GPU, TinySPICE, for efficiently analyzing small nonlinear circuits, such as standard cell(More)
In the past decades, harmonic balance (HB) has been widely used for computing steady-state solutions of nonlinear radio-frequency (RF) and microwave circuits. However, using HB for simulating strongly nonlinear RF circuits still remains a very challenging task. Although direct solution methods can be adopted to handle moderate to strong nonlinearities in HB(More)
In the past decades, harmonic balance (HB) has been widely used for computing steady-state solutions of nonlinear radio-frequency (RF) and microwave circuits. However, using HB for simulating strongly nonlinear post-layout RF circuits still remains a very challenging task. Although direct solution methods can be adopted to handle moderate to strong(More)
To improve the efficiency of direct solution methods in SPICE-accurate integrated circuit (IC) simulations, preconditioned iterative solution techniques have been widely studied in the past decades. However, it is still an extremely challenging task to develop robust yet efficient general-purpose preconditioning methods that can deal with various types of(More)
Unlike traditional fast SPICE simulation techniques that rely on a variety of approximation approaches to trade off simulation accuracy for greater speed, SPICE-accurate integrated circuit (IC) simulations can truthfully predict circuit electrical behaviors, and therefore become indispensable for verification of large IC designs. Post-layout SPICE-accurate(More)
TinySPICE was a SPICE simulator on GPU developed to achieve dramatic speedups in statistical simulations of small nonlinear circuits, such as standard cell designs and SRAMs. While TinySPICE can perform circuit simulations much faster than traditional SPICE tools for small circuits, it may not be efficient for handling relatively large logic/memory circuit(More)
Harmonic Balance (HB) analysis is key to efficient verification of large post-layout RF and microwave integrated circuits (ICs). This paper introduces a novel transient-simulation guided graph sparsification technique, as well as an efficient runtime performance modeling approach tailored for heterogeneous manycore CPU-GPU computing system to build(More)
Integrated circuit technology has gone through several decades of aggressive scaling. It is increasingly challenging to analyze growing design complexity. Post-layout SPICE simulation can be computationally prohibitive due to the huge amount of parasitic elements, which can easily boost the computation and memory cost. As the decrease in device size, the(More)
  • 1