Lellean Jebailey

Learn More
Insulin causes distinct cortical actin remodeling in muscle and fat cells, and interfering with actin dynamics halts glucose transporter 4 (GLUT4) translocation to the membrane. Phosphatidylinositol 3-kinase (PI3-K) and the small G protein Rac govern myocyte actin remodeling, whereas TC10 alpha contributes to adipocyte actin dynamics downstream of(More)
In muscle cells, insulin elicits recruitment of the glucose transporter GLUT4 to the plasma membrane. This process engages sequential signaling from insulin receptor substrate (IRS)-1 to phosphatidylinositol (PI) 3-kinase and the serine/threonine kinase Akt. GLUT4 translocation also requires an Akt-independent but PI 3-kinase-and Rac-dependent remodeling of(More)
Many cytokines increase their receptor affinity for Janus kinases (JAKs). Activated JAK binds to signal transducers and activators of transcription, insulin receptor substrates (IRSs), and Shc. Intriguingly, insulin acting through its own receptor kinase also activates JAK2. However, the impact of such activation on insulin action remains unknown. To(More)
Insulin promotes the translocation of glucose transporter 4 (GLUT4) from intracellular pools to the surface of muscle and fat cells via a mechanism dependent on phosphatidylinositol (PtdIns) 3-kinase, actin cytoskeletal remodeling and the v-SNARE VAMP2. The growth factor PDGF-BB also robustly activates PtdIns 3-kinase and induces actin remodeling, raising(More)
Insulin increases glucose uptake into muscle via glucose transporter-4 (GLUT4) translocation to the cell membrane, but the regulated events in GLUT4 traffic are unknown. Here we focus on the role of class IA phosphatidylinositol (PI) 3-kinase and specific phosphoinositides in the steps of GLUT4 arrival and fusion with the membrane, using L6 muscle cells(More)
  • 1