Learn More
In vitro synthesis of endoplasmic reticulum-derived transport vesicles has been reconstituted with washed membranes and three soluble proteins (Sar1p, Sec13p complex, and Sec23p complex). Vesicle formation requires GTP but can be driven by nonhydrolyzable analogs such as GMP-PNP. However, GMP-PNP vesicles fail to target and fuse with the Golgi complex(More)
We have previously shown that Madin-Darby canine kidney (MDCK) epithelial cells grown in collagen gels in the presence of fibroblasts or fibroblast-conditioned medium (CM) form branching tubules, instead of the spherical cysts that develop under control conditions. We now report that the fibroblast-derived molecule responsible for epithelial tubulogenesis(More)
We have designed an in vitro system in which Madin-Darby canine kidney (MDCK) epithelial cells are cocultured in collagen gels with fibroblasts under conditions precluding heterocellular contact. Using this experimental approach, we have obtained evidence that fibroblast-derived soluble factors play a crucial role in the control of epithelial morphogenesis.(More)
Addition of brefeldin A (BFA) to most cells results in both the formation of extensive, uncoated membrane tubules through which Golgi components redistribute into the ER and the failure to transport molecules out of this mixed ER/Golgi system. In this study we provide evidence that suggests BFA's effects are not limited to the Golgi apparatus but are(More)
The endoplasmic reticulum (ER) and the Golgi comprise the first two steps in protein secretion. Vesicular carriers mediate a continuous flux of proteins and lipids between these compartments, reflecting the transport of newly synthesized proteins out of the ER and the retrieval of escaped ER residents and vesicle machinery. Anterograde and retrograde(More)
An N-ethylmaleimide-sensitive transport component (NSF) has been purified on the basis of its ability to support transport between Golgi cisternae. We now report that NSF is needed for membrane fusion. Thus, when NSF is withheld from incubations of Golgi stacks with cytosol and ATP, uncoated transport vesicles accumulate. Biochemical experiments confirm(More)
We have developed an assay to monitor the assembly of the COPII coat onto liposomes in real time. We show that with Sar1pGTP bound to liposomes, a single round of assembly and disassembly of the COPII coat lasts a few seconds. The two large COPII complexes Sec23/24p and Sec13/31p bind almost instantaneously (in less than 1 s) to Sar1pGTP-doped liposomes.(More)
ADP-ribosylation factor (ARF) is an abundant and highly conserved low molecular weight GTP-binding protein that was originally identified as a key element required for the action of cholera toxin in mammalian cells, but whose physiological role is unknown. We report that ARF family proteins are highly concentrated in non-clathrin-coated transport vesicles(More)
Budding of COP-coated vesicles (the likely carriers of newly synthesized proteins from the endoplasmic reticulum through the Golgi stack) from Golgi cisternae requires ADP-ribosylation factor (ARF), coatomer proteins from the cytosol, GTP, and fatty acyl-coenzyme A (CoA). The assembly of coated buds on the membranes requires coatomer, ARF, and GTP. When(More)