Learn More
The effects of solids retention time (SRT) and temperature on waste activated sludge (WAS) hydrolysis and short-chain fatty acids (SCFAs) accumulation were investigated in a series of continuous-flow reactors at pH 10. The experimental results showed that the increase of either SRT or temperature benefited the hydrolysis of WAS and the production of SCFAs.(More)
S sludge, the most important byproduct of biological wastewater treatment, is considered an important source of secondary pollution in aquatic environments, linked to health problems and even deaths in humans. In 2012, China generated more than 68.5 billion metric tonnes of wastewater, and this is expected to rise to 78.4 billion metric tonnes in 2015. The(More)
The increasing use of copper nanoparticles (Cu NPs) raises concerns about their potential toxic effects on the environment. However, their influences on wastewater biological nutrient removal (BNR) and nitrous oxide (N(2)O) generation in the activated sludge process have never been documented. In this study the long-term effects of Cu NPs (0.1-10 mg/L) on(More)
Adding alkyl polyglucose (APG) into an anaerobic treatment system of waste activated sludge (WAS) was reported to remarkably improve the production of short-chain fatty acids (SCFAs), especially propionic acid via simultaneously accelerating solubilization and hydrolysis, enhancing acidification, inhibiting methanogenesis and balancing carbon to nitrogen(More)
Volatile fatty acids (VFAs), the carbon source of biological nutrients removal, can be produced by waste activated sludge (WAS) anaerobic fermentation. However, because of high protein content and low carbon to nitrogen mass ratio (C/N) of WAS, the production of VFAs, especially propionic acid, a more preferred VFA than acetic acid for enhanced biological(More)
Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type via pH control was investigated. The hydrogen production reached 205.2 mL/g-protein when protein wastewater was pretreated at pH 12 and then fermented at pH 10. The mechanism studies showed that pH 12 pretreatment significantly enhanced(More)
The accumulation of short-chain fatty acids (SCFAs), a preferred carbon source for enhanced biological phosphorus removal microbes, was significantly improved when waste activated sludge (WAS) was fermented at pH 10. The kinetics of WAS hydrolysis and SCFAs production at pH 10 was investigated. It was observed that during WAS anaerobic fermentation the(More)
Volatile fatty acids (VFA), the preferred carbon source for biological nutrients removal, can be produced by waste activated sludge (WAS) anaerobic fermentation. However, because the rate of VFA accumulation is limited by that of WAS hydrolysis and VFA is always consumed by methanogens at acidic or neutral pHs, the ultrasonic pretreatment which can(More)
The shortage of nitrogen active sites and relatively low nitrogen content result in unsatisfying eletrocatalytic activity and durability of nitrogen-doped graphene (NG) for oxygen reduction reaction (ORR). Here we report a novel approach to substantially enhance electrocatalytic oxygen reduction on NG electrode by the implantation of nitrogen active sites(More)
Nitrogen-doped graphene (NG), with unique electronic properties, is showing great promise for a wide range of practical applications. However, the reported approaches for NG synthesis are usually complex, require high temperatures, produce lower atomic ratios of nitrogen to carbon (N/C), and do not deliver products in a reasonably large quantity. Here we(More)