Learn More
We present a study of the variability of the minimal transmembrane voltage resulting in detectable electroporation of the plasma membrane of spherical and irregularly shaped CHO cells (we denote this voltage by ITVc). Electroporation was detected by monitoring the influx of Ca(2+), and the transmembrane voltage was computed on a 3D finite-elements model of(More)
BACKGROUND In order to reduce the side-effects of chemotherapy, combined chemotherapy-electroporation (electrochemotherapy) has been suggested. Electroporation, application of appropriate electric pulses to biological cells, can significantly enhance molecular uptake of cells due to formation of transient pores in the cell membrane. It was experimentally(More)
BACKGROUND The cell membrane acts as a barrier that hinders free entrance of most hydrophilic molecules into the cell. Due to numerous applications in medicine, biology and biotechnology, the introduction of impermeant molecules into biological cells has drawn considerable attention in the past years. One of the most famous methods in this field is(More)
The discovery of the human genome has unveiled new fields of genomics, transcriptomics, and proteomics, which has produced paradigm shifts on how to study disease mechanisms, wherein a current central focus is the understanding of how gene signatures and gene networks interact within cells. These gene function studies require manipulating genes either(More)
The majority of (mammalian) cells in our body are sensitive to mechanical forces, but little work has been done to develop assays to monitor mechanosensor activity. Furthermore, it is currently impossible to use mechanosensor activity to drive gene expression. To address these needs, we developed the first mammalian mechanosensitive synthetic gene network(More)
The precise flow characteristics that promote different atherosclerotic plaque types remain unclear. We previously developed a blood flow-modifying cuff for ApoE-/- mice that induces the development of advanced plaques with vulnerable and stable features upstream and downstream of the cuff, respectively. Herein, we sought to test the hypothesis that changes(More)
External electric field, which is applied to cells, can, under suitable field parameters, induce local distortions and structural rearrangements of lipid molecules in the cell membrane. Depending on the field parameters, the membrane hence becomes either transiently or permanently permeable even after the field has ceased, allowing molecules that are(More)
  • 1