Leila M. Luheshi

Learn More
The generation of toxic oligomers during the aggregation of the amyloid-β (Aβ) peptide Aβ42 into amyloid fibrils and plaques has emerged as a central feature of the onset and progression of Alzheimer's disease, but the molecular pathways that control pathological aggregation have proved challenging to identify. Here, we use a combination of kinetic studies,(More)
Amyotrophic lateral sclerosis (ALS) is predominantly sporadic, but associated with heritable genetic mutations in 5-10% of cases, including those in Cu/Zn superoxide dismutase (SOD1). We previously showed that misfolding of SOD1 can be transmitted to endogenous human wild-type SOD1 (HuWtSOD1) in an intracellular compartment. Using NSC-34 motor neuron-like(More)
Oligomeric assemblies formed from a variety of disease-associated peptides and proteins have been strongly associated with toxicity in many neurodegenerative conditions, such as Alzheimer's disease. The precise nature of the toxic agents, however, remains still to be established. We show that prefibrillar aggregates of E22G (arctic) variant of the(More)
Institute of Biomedicine, University of Gothenburg, SE-405 30 Gothenburg, Sweden; Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom; Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, SE-751 25 Uppsala, Sweden; and Department of Molecular Biology, Swedish University of Agricultural Sciences(More)
More than 40 human diseases are associated with fibrillar deposits of specific peptides or proteins in tissue. Amyloid fibrils, or their precursors, can be highly toxic to cells, suggesting their key role in disease pathogenesis. Proteins not associated with any disease are able to form oligomers and amyloid assemblies in vitro displaying structures and(More)
Protein aggregation into amyloid fibrils and protofibrillar aggregates is associated with a number of the most common neurodegenerative diseases. We have established, using a computational approach, that knowledge of the primary sequences of proteins is sufficient to predict their in vitro aggregation propensities. Here we demonstrate, using rational(More)
Increasing evidence indicates that oligomeric protein assemblies may represent the molecular species responsible for cytotoxicity in a range of neurological disorders including Alzheimer and Parkinson diseases. We use all-atom computer simulations to reveal that the process of oligomerization can be divided into two steps. The first is characterised by a(More)
Protein misfolding is the underlying cause of many highly debilitating disorders ranging from Alzheimer's Disease to Cystic Fibrosis. Great strides have been made recently in understanding what causes proteins to misfold, primarily through the use of biophysical and computational techniques that enable systematic and quantitative analysis of the effects of(More)
Parkinson's disease (PD) is a heterogeneous disease that can be difficult to diagnose, and for which we have no simple effective biomarker. In this study we have investigated whether peripheral alpha-synuclein might represent a useful biomarker given that it has a central role in the pathogenesis of PD. We found that full length and truncated(More)
Soluble oligomeric aggregates of the amyloid-beta peptide (Abeta) have been implicated in the pathogenesis of Alzheimer's disease (AD). Although the conformation adopted by Abeta within these aggregates is not known, a beta-hairpin conformation is known to be accessible to monomeric Abeta. Here we show that this beta-hairpin is a building block of toxic(More)