Learn More
Xylanases catalyze the hydrolysis of plant hemicellulose xylan into oligosaccharides by cleaving the main-chain glycosidic linkages connecting xylose subunits. To study ligand binding and to understand how the pH constrains the activity of the enzyme, variants of the Trichoderma reesei xylanase were designed to either abolish its activity (E177Q) or to(More)
Inositol monophosphatase is a key enzyme of the phosphatidylinositol signalling pathway and the putative target of the mood-stabilizing drug lithium. The crystal structure of bovine inositol monophosphatase has been determined at 1.4 A resolution in complex with the physiological magnesium ion ligands. Three magnesium ions are octahedrally coordinated at(More)
Noroviruses are the major cause of human epidemic nonbacterial gastroenteritis. Viral replication requires a 3C cysteine protease that cleaves a 200 kDa viral polyprotein into its constituent functional proteins. Here we describe the X-ray structure of the Southampton norovirus 3C protease (SV3CP) bound to an active site-directed peptide inhibitor (MAPI)(More)
The Protein Crystallography Station at Los Alamos Neutron Science Center is a high-performance beamline that forms the core of a capability for neutron macromolecular structure and function determination. This capability also includes the Macromolecular Neutron Crystallography (MNC) consortium between Los Alamos (LANL) and Lawrence Berkeley National(More)
The monobactam antibiotic aztreonam is used to treat cystic fibrosis patients with chronic pulmonary infections colonized by Pseudomonas aeruginosa strains expressing CTX-M extended-spectrum β-lactamases. The protonation states of active-site residues that are responsible for hydrolysis have been determined previously for the apo form of a CTX-M β-lactamase(More)
Superoxide dismutases (SODs) are enzymes that protect against oxidative stress by dismutation of superoxide into oxygen and hydrogen peroxide through cyclic reduction and oxidation of the active-site metal. The complete enzymatic mechanisms of SODs are unknown since data on the positions of hydrogen are limited. Here, methods are presented for large crystal(More)
The X-ray structure of the enzyme 5-aminolaevulinic acid dehydratase (ALAD) from yeast complexed with the competitive inhibitor 5-hydroxylaevulinic acid has been determined at a resolution of 1.9 A. The structure shows that the inhibitor is bound by a Schiff-base link to one of the invariant active-site lysine residues (Lys263). The inhibitor appears to(More)
A number of X-ray analyses of an enzyme involved in a key early stage of tetrapyrrole biosynthesis are reported. Two structures of human 5-aminolaevulinate dehydratase (ALAD), native and recombinant, have been determined at 2.8 Å resolution, showing that the enzyme adopts an octameric quaternary structure in accord with previously published analyses of the(More)
Galectin-3 is an important protein in molecular signalling events involving carbohydrate recognition, and an understanding of the hydrogen-bonding patterns in the carbohydrate-binding site of its C-terminal domain (galectin-3C) is important for the development of new potent inhibitors. The authors are studying these patterns using neutron crystallography.(More)
The role of the conserved residue Tyr105 in class A β-lactamases has been the subject of investigation using both structural studies and saturation mutagenesis. Both have shown that while it does not need to be strictly conserved for activity, it is important for substrate recognition. With this in mind we determined the crystal structure of Toho1(More)
  • 1