Leighton B. N. Hinkley

Learn More
Atypical sensory-based behaviors are a ubiquitous feature of autism spectrum disorders (ASDs). In this article, we review the neural underpinnings of sensory processing in autism by reviewing the literature on neurophysiological responses to auditory, tactile, and visual stimuli in autistic individuals. We review studies of unimodal sensory processing and(More)
In the negative compatibility effect (NCE) a masked prime arrow, pointing left or right, is followed by an unmasked (visible) target arrow. The task is to press the left or right switch corresponding to the visible arrow. Surprisingly, reaction time is longer (slowed) when the prime and target indicate the same, rather than different, responses. By(More)
We explored cortical fields on the upper bank of the Sylvian fissure using functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) to measure responses to two stimulus conditions: a tactile stimulus applied to the right hand and a tactile stimulus with an additional movement component. fMRI data revealed bilateral activation in S2/PV(More)
Areas of human posterior parietal cortex (PPC) specialized for processing sensorimotor information associated with visually locating an object, reaching to grasp, and manually exploring that object were examined using functional MRI. Cortical activation was observed in response to three tasks: 1) saccadic eye movements, 2) visually guided reaching to grasp,(More)
Intractable focal epilepsy is a devastating disorder with profound effects on cognition and quality of life. Epilepsy surgery can lead to seizure freedom in patients with focal epilepsy; however, sometimes it fails due to an incomplete delineation of the epileptogenic zone. Brain networks in epilepsy can be studied with resting-state functional connectivity(More)
BACKGROUND Schizophrenia (SZ) is associated with functional decoupling between cortical regions, but we do not know whether and where this occurs in low-frequency electromagnetic oscillations. The goal of this study was to use magnetoencephalography (MEG) to identify brain regions that exhibit abnormal resting-state connectivity in the alpha frequency range(More)
Anterior parietal somatosensory areas 3a, 3b, 1, and 2 generally contain cells with receptive fields that are on the contralateral body. However, inputs from midline structures such as the mouth must be uniquely integrated across the midline. This hypothesis is supported by studies of these fields from nonhuman primates that demonstrate ipsilateral(More)
The corpus callosum is hypothesized to play a fundamental role in integrating information and mediating complex behaviors. Here, we demonstrate that lack of normal callosal development can lead to deficits in functional connectivity that are related to impairments in specific cognitive domains. We examined resting-state functional connectivity in(More)
The neural underpinnings of sensory processing differences in autism remain poorly understood. This prospective magnetoencephalography (MEG) study investigates whether children with autism show atypical cortical activity in the primary somatosensory cortex (S1) in comparison with matched controls. Tactile stimuli were clearly detectable, and painless taps(More)
Little is known about the temporal dynamics of cortical activation during visually guided behavior. We measured changes in brain activity in human posterior parietal cortex (PPC) and premotor cortex (PMC) during saccades and visually guided reaching using magnetoencephalography (MEG) and novel time-frequency reconstructions of MEG (tfMEG) data. Results(More)