Learn More
Mechanistic investigations on the previously reported reduction of B-alkylcatecholboranes in the presence of methanol led to the disclosure of a new mechanism involving catechol as a reducing agent. More than just revising the mechanism of this reaction, we disclose here the surprising role of catechol, a chain breaking antioxidant, which becomes a source(More)
A simple modular tandem approach to multiply substituted cyclopentane derivatives is reported, which succeeds by joining organometallic addition, conjugate addition, radical cyclization, and oxygenation steps. The key steps enabling this tandem process are the thus far rarely used isomerization of allylic alkoxides to enolates and single-electron transfer(More)
When used with trialkylboranes, catechol derivatives, which are low-cost and low toxicity, are valuable hydrogen atom donors for radical chain reactions involving alkyl iodides and related radical precursors. The system 4-tert-butylcatechol/triethylborane has been used to reduce a series of secondary and tertiary iodides, a xanthate, and a thiohydroxamate(More)
  • 1