Learn More
SIRT6 is a member of a highly conserved family of NAD(+)-dependent deacetylases with various roles in metabolism, stress resistance, and life span. SIRT6-deficient mice develop normally but succumb to a lethal hypoglycemia early in life; however, the mechanism underlying this hypoglycemia remained unclear. Here, we demonstrate that SIRT6 functions as a(More)
Reprogramming of cellular metabolism is a key event during tumorigenesis. Despite being known for decades (Warburg effect), the molecular mechanisms regulating this switch remained unexplored. Here, we identify SIRT6 as a tumor suppressor that regulates aerobic glycolysis in cancer cells. Importantly, loss of SIRT6 leads to tumor formation without(More)
DNA damage is linked to multiple human diseases, such as cancer, neurodegeneration, and aging. Little is known about the role of chromatin accessibility in DNA repair. Here, we find that the deacetylase sirtuin 6 (SIRT6) is one of the earliest factors recruited to double-strand breaks (DSBs). SIRT6 recruits the chromatin remodeler SNF2H to DSBs and focally(More)
Abnormal activation of insulin-like growth factor (IGF)-Akt signaling is implicated in the development of various diseases, including heart failure. However, the molecular mechanisms that regulate activation of this signaling pathway are not completely understood. Here we show that sirtuin 6 (SIRT6), a nuclear histone deacetylase, functions at the level of(More)
We characterized 7 highly pathogenic avian influenza A(H5N1) viruses isolated from poultry in China during 2009-2012 and found that they belong to clade 2.3.4 but do not fit within the 3 defined subclades. Antigenic drift in subtype H5N1 variants may reduce the efficacy of vaccines designed to control these viruses in poultry.
One H5N8 and three H5N5 highly pathogenic avian influenza (HPAI) viruses which derived their HA genes from the Asian H5N1 lineage were isolated from poultry during 2009-2010 in mainland China. Pathogenicity studies showed that these viruses were all highly virulent to chickens, while they varied from moderate to high virulence in mice and from mild to(More)
Most regulated proteolysis in eukaryotes is carried out by the 26S proteasome. This large, multisubunit complex comprises a catalytic core particle (20S proteasome) and a regulatory particle (19S regulator) capping each end. In Drosophila, about a third of the 32 proteasome subunits are found to have testis-specific isoforms, encoded by paralogous genes.(More)
Here we present the first isolation of major histocompatibility complex (MHC) class I genes from two ancient fish, paddlefish (Polyodon spathula) and Chinese sturgeon (Acipenser sinensis). Seventeen sequences obtained showed high polymorphism and positive natural selection with dN/dS>1. Evolutionary relationships revealed that sequences from paddlefish and(More)
Sirt1, the mammalian ortholog of the yeast Sir2 (silent information regulator 2), was shown to play an important role in metabolism and in age-associated diseases, but its role in skeletal homeostasis and osteoporosis has yet not been studied. Using 129/Sv mice with a germline mutation in the Sirt1 gene, we demonstrate that Sirt1 haplo-insufficient(More)
A modified electroporation method using trehalose is presented for the transformation of Bacillus subtilis. The new method improved the transformation efficiency of B. subtilis nearly 2,000-fold compared with the usual method, giving 4 × 105 transformants/μg DNA. Using this method, B. subtilis was engineered to improve production of antimicrobial(More)