Learn More
Spinal muscular atrophy (SMA) is an autosomal recessive disorder in humans which results in the loss of motor neurons. It is caused by reduced levels of the survival motor neuron (SMN) protein as a result of loss or mutation of the SMN1 gene. SMN is encoded by two genes, SMN1 and SMN2, which essentially differ by a single nucleotide in exon 7. As a result,(More)
NF-kappaB is a family of related, dimeric transcription factors that are readily activated in cells by signals associated with stress or pathogens. These factors are critical to host defense, as demonstrated previously with mice deficient in individual subunits of NF-kappaB. We have generated mice deficient in both the p50 and p52 subunits of NF-kappaB to(More)
  • Y Zhai, J Ni, +13 authors G L Yu
  • 1999
A novel member of the tumor necrosis factor (TNF) family has been identified from the human umbilical vein endothelial cell cDNA library, named vascular endothelial growth inhibitor (VEGI). The VEGI gene was mapped to human chromosome 9q32. The cDNA for VEGI encodes a protein of 174 amino acid residues with the characteristics of a type II transmembrane(More)
Tumor necrosis factor receptor-1 (TNFR-1) and CD95 (also called Fas or APO-1) are cytokine receptors that engage the apoptosis pathway through a region of intracellular homology, designated the "death domain." Another death domain-containing member of the TNFR family, death receptor 3 (DR3), was identified and was shown to induce both apoptosis and(More)
Positron emission tonography (PET) is useful in diagnosis and radiation treatment planning for a variety of cancers. For patients with cancers in thoracic or upper abdominal region, the respiratory motion produces large distortions in the tumor shape and size, affecting the accuracy in both diagnosis and treatment. Four-dimensional (4D) (gated) PET aims to(More)
Runx (Cbfa/AML) transcription factors are critical for tissue-specific gene expression. A unique targeting signal in the C terminus directs Runx factors to discrete foci within the nucleus. Using Runx2/CBFA1/AML3 and its essential role in osteogenesis as a model, we investigated the fundamental importance of fidelity of subnuclear localization for tissue(More)
The Src tyrosine kinase has been implicated in a wide variety of signal transduction pathways, yet despite the nearly ubiquitous expression of c-src, src-/- mice show only one major phenotype-osteopetrosis caused by an intrinsic defect in osteoclasts, the cells responsible for resorbing bone. To explore further the role of Src both in osteoclasts and other(More)
On-board imager (OBI) based cone-beam computed tomography (CBCT) has become available in radiotherapy clinics to accurately identify the target in the treatment position. However, due to the relatively slow gantry rotation (typically about 60 s for a full 360 degrees scan) in acquiring the CBCT projection data, the patient's respiratory motion causes(More)
Intensity-modulated radiation therapy (IMRT) represents one of the most significant technical advances in radiation therapy since the advent of the medical linear accelerator. It allows the clinical implementation of highly conformal nonconvex dose distributions. This complex but promising treatment modality is rapidly proliferating in both academic and(More)
The molecular mechanism for how RISC and microRNAs selectively and reversibly regulate mRNA translation in response to receptor signaling is unknown but could provide a means for temporal and spatial control of translation. Here we show that miR-125a targeting PSD-95 mRNA allows reversible inhibition of translation and regulation by gp1 mGluR signaling.(More)