Leendert Cornelis van Loon

Learn More
Non-pathogenic soilborne microorganisms can promote plant growth, as well as suppress diseases. Plant growth promotion is taken to result from improved nutrient acquisition or hormonal stimulation. Disease suppression can occur through microbial antagonism or induction of resistance in the plant. Several rhizobacterial strains have been shown to act as(More)
Despite significant advances in crop protection, plant diseases cause a 20% yield loss in food and cash crops worldwide. Therefore, interactions between plants and pathogens have been studied in great detail. In contrast, the interplay between plants and non-pathogenic microorganisms has received scant attention, and differential responses of plants to(More)
Pathogenesis-related proteins (abbreviated PRs) are defined as plant proteins that are induced in pathological or related situations. We propose a unifying nomenclature for PRs based on their grouping into families sharing amino acid sequences, serological relationship, and/or enzymatic or biological activity. The nomenclature classifies novel proteins(More)
The ability of selected strains of fluorescent Pseudomonas spp. to cause induced systemic resistance (ISR) in Eucalyptus urophylla against bacterial wilt caused by Ralstonia solanacearum was investigated. Four of the five strains used can produce salicylic acid (SA) in vitro and, therefore, chemical SA, that is known to induce resistance in many plant(More)
Selected strains of nonpathogenic rhizobacteria from the genus Pseudomonas are capable of eliciting broad-spectrum induced systemic resistance (ISR) in plants that is phenotypically similar to pathogen-induced systemic acquired resistance (SAR). In Arabidopsis, the ISR pathway functions independently of salicylic acid (SA) but requires responsiveness to(More)
Selected strains of rhizosphere bacteria reduce disease by activating a resistance mechanism in the plant named rhizobacteria-mediated induced systemic resistance (ISR). Rhizobacteria-mediated ISR resembles pathogen-induced systemic acquired resistance (SAR) in that both types of induced resistance render uninfected plant parts more resistant towards a(More)