Lee R. White

Learn More
We report the exact calculation of the Stokes drag for cylindrical particles diffusing in Saffman's model membrane. Simultaneous prediction of lateral and rotational diffusion coefficients suggests that microviscosities may not be as large as previously thought and implicates the bathing viscosities.
Colloidal particles and biological cells are patterned and separated laterally adjacent to a micropatterned electrode array by applying AC electric fields that are principally oriented normally to the electrode array. This is demonstrated for yeast cells, red blood cells, and colloidal polystyrene particles of different sizes and zeta-potentials. The(More)
We present an internal pumping strategy to enhance solute fluxes in polymer gels. The method is based on electroosmotic flow driven by an electric field applied across a gel that has been doped with charged colloidal inclusions. This work is motivated by the need to enhance the transport in gel-based biosensor devices whose response dynamics are often mass(More)
Dielectrophoresis (DEP) is increasingly being explored as a means to manipulate or separate colloidal particles. The direction and strength of the DEP force depend strongly on the induced dipole strength, K, of a polarized particle, and predictions of DEP forces require carefully computed values for K. In this paper, we present the calculation of the dipole(More)
We have identified conditions in which the atomic force microscope can be used to stretch a meniscus of a perfluoropolyether (PFPE) lubricant pinned between an AFM tip and a nanometer-thick PFPE film to obtain the disjoining pressure of the film. Under quasi-equilibrium conditions, the chemical potential of the film can be equated to that of the stretched(More)
This paper outlines a complete and self-consistent cell model theory of the electrokinetics of dense spherical colloidal suspensions for general electrolyte composition, frequency of applied field, zeta potential, and particle size. The standard electrokinetic equations, first introduced for any given particle configuration, are made tractable to(More)
The semianalytic theory developed previously (Chan, D. Y. C., Dagastine, R. R., and White, L. R., J. Colloid Interface Sci. 236, 141 (2001)) to predict the force curve of an AFM measurement at a liquid interface using a colloidal probe has been expanded to incorporate a general force law with both attractive and repulsive forces. Expressions for the(More)
This research develops and demonstrates a Hierarchical Production Planning System Simulator (HPPSS) for the analysis of feedback-and-control mechanisms between linear programming models at two levels within a Hierarchical Production Planning (HPP) system. This work focuses on planning levels dealing with tactical decisions. Three areas distinguish it from(More)
Applications of microelectromechanical systems in the biotechnological arena (bioMEMS) are a subject of great current interest. Accurate calculation of electric field distribution in these devices is essential to the understanding and design of processes such as dielectrophoresis and AC electroosmosis that drive MEMS-based devices. In this paper, we present(More)
We present calculations of the van der Waals force for carbon black dispersions in both aqueous and nonaqueous media using Lifshitz theory. The microstructure and composition of carbon black are complex, but an initial approximation to the shell-like microstructure of carbon black allows the local interaction of carbon black particles to be approximated as(More)