Learn More
Aluminum (Al) toxicity is a major constraint for crop production in acid soils, although crop cultivars vary in their tolerance to Al. We have investigated the potential role of citrate in mediating Al tolerance in Al-sensitive yeast (Saccharomyces cerevisiae; MMYO11) and canola (Brassica napus cv Westar). Yeast disruption mutants defective in genes(More)
The three isozymes of isocitrate dehydrogenase in Saccharomyces cerevisiae differ in subunit structure, subcellular location, and cofactor specificity. The two mitochondrial isozymes, IDH and IDP1, are NAD- and NADP-specific, respectively. Several lines of evidence presented here confirm the importance of IDH to respiratory processes. Expression of IDH RNA(More)
The cytosolic isozyme of NADP-specific isocitrate dehydrogenase (IDP2) was purified from a Saccharomyces cerevisiae mutant containing a chromosomal disruption in the gene encoding the mitochondrial isozyme (IDP1). IDP2 was shown to be a homodimer with a subunit molecular weight of approximately 45,000 and an isoelectric point of 5.5. Amino acid sequences(More)
To understand the many roles of the Krebs tricarboxylic acid (TCA) cycle in cell function, we used DNA microarrays to examine gene expression in response to TCA cycle dysfunction. mRNA was analyzed from yeast strains harboring defects in each of 15 genes that encode subunits of the eight TCA cycle enzymes. The expression of >400 genes changed at least(More)
Production of NADPH in Saccharomyces cerevisiae cells grown on glucose has been attributed to glucose-6-phosphate dehydrogenase (Zwf1p) and a cytosolic aldehyde dehydrogenase (Ald6p) (Grabowska, D., and Chelstowska, A. (2003) J. Biol. Chem. 278, 13984-13988). This was based on compensation by overexpression of Ald6p for phenotypes associated with ZWF1 gene(More)
The major nonmitochondrial isozyme of malate dehydrogenase (MDH2) in Saccharomyces cerevisiae cells grown with acetate as a carbon source was purified and shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to have a subunit molecular weight of approximately 42,000. Enzyme assays and an antiserum prepared against the purified protein were(More)
To compare roles of specific enzymes in supply of NADPH for cellular biosynthesis, collections of yeast mutants were constructed by gene disruptions and matings. These mutants include haploid strains containing all possible combinations of deletions in yeast genes encoding three differentially compartmentalized isozymes of NADP+-specific isocitrate(More)
Isozymes of NADP+-specific isocitrate dehydrogenase (IDP) provide NADPH in cytosolic, mitochondrial, and peroxisomal compartments of eukaryotic cells. Analyses of purified IDP isozymes from yeast and from mouse suggest a general correspondence of pH optima for catalysis and pI values with pH values reported for resident cellular compartments. However, mouse(More)
Rat liver cytosolic NADP+-specific isocitrate dehydrogenase (IDP2) was expressed in bacteria as a fusion protein with maltose binding protein (MBP). High levels of expression were obtained. The fusion protein was purified from bacterial lysates by affinity chromatography with an amylose resin and found to be catalytically active. IDP2 was separated from MBP(More)
The reoxidation of NADH generated in reactions within the mitochondrial matrix of Saccharomyces cerevisiae is catalyzed by an NADH dehydrogenase designated Ndi1p (C. A. M. Marres, S. de Vries, and L. A. Grivell, Eur. J. Biochem. 195:857-862, 1991). Gene disruption analysis was used to examine possible metabolic functions of two proteins encoded by open(More)