Learn More
Sympathetic neurons depend on nerve growth factor (NGF) for survival and die by apoptosis in its absence. We have investigated the pattern of expression of the Jun and Fos family of transcription factors in dying sympathetic neurons using antibodies specific for each family member. When sympathetic neurons are deprived of NGF, the level of c-Jun protein(More)
The blood-brain barrier (BBB) is formed by brain capillary endothelial cells (ECs). In the late embryonic and early postnatal period, these cells respond to inducing factors found in the brain environment by adopting a set of defined characteristics, including high-electrical-resistance tight junctions. Although the factors have not been identified(More)
When deprived of nerve growth factor (NGF), developing sympathetic neurons die by apoptosis. This death is associated with an increase in the level of c-Jun protein and is blocked by expression of a c-Jun dominant negative mutant. Here we have investigated whether NGF withdrawal activates Jun kinases, a family of stress-activated protein kinases that can(More)
Cytochrome c has been shown to play a role in cell-free models of apoptosis. During NGF withdrawal-induced apoptosis of intact rat superior cervical ganglion (SCG) neurons, we observe the redistribution of cytochrome c from the mitochondria to the cytoplasm. This redistribution is not inhibited by the caspase inhibitor Z-Val-Ala-Asp-fluoromethylketone(More)
A major obstacle for the discovery of psychoactive drugs is the inability to predict how small molecules will alter complex behaviors. We report the development and application of a high-throughput, quantitative screen for drugs that alter the behavior of larval zebrafish. We found that the multidimensional nature of observed phenotypes enabled the(More)
To directly test the requirement for hedgehog signaling in the telencephalon from early neurogenesis, we examined conditional null alleles of both the Sonic hedgehog and Smoothened genes. While the removal of Shh signaling in these animals resulted in only minor patterning abnormalities, the number of neural progenitors in both the postnatal subventricular(More)
The combined activity of three transcription factors can reprogram adult cells into induced pluripotent stem cells (iPSCs). However, the transgenic methods used for delivering reprogramming factors have raised concerns regarding the future utility of the resulting stem cells. These uncertainties could be overcome if each transgenic factor were replaced with(More)
Endothelial cells that make up brain capil-laries and constitute the blood-brain barrier become different from peripheral endothelial cells in response to inductive factors found in the nervous system. We have established a cell culture model of the blood-brain barrier by treating brain endothelial cells with a combination of astrocyte-conditioned medium(More)
The CNS is thought to develop from self-renewing stem cells that generate neurons, astrocytes, and oligodendrocytes. Other data, however, have suggested that astrocytes and oligodendrocytes are generated from separate progenitor populations. To reconcile these observations, we have prospectively isolated progenitors that do or do not express Olig2, an(More)
Stepwise differentiation from embryonic stem cells (ESCs) to functional insulin-secreting beta cells will identify key steps in beta-cell development and may yet prove useful for transplantation therapy for diabetics. An essential step in this schema is the generation of pancreatic progenitors--cells that express Pdx1 and produce all the cell types of the(More)