Lee H. Spangler

Learn More
Microbially-induced calcium carbonate (CaCO3) precipitation (MICP) is a widely explored and promising technology for use in various engineering applications. In this review, CaCO3 precipitation induced via urea hydrolysis (ureolysis) is examined for improving construction materials, cementing porous media, hydraulic control, and remediating environmental(More)
A field facility located in Bozeman, Montana provides the opportunity to test methods to detect, locate, and quantify potential CO2 leakage from geologic storage sites. From 9 July to 7 August 2008, 0.3 t CO2 day -1 were injected from a 100-m long, *2.5-m deep horizontal well. Repeated measurements of soil CO2 fluxes on a grid characterized the(More)
A scanning polarized lidar was used to detect flying honey bees trained to locate buried land mines through odor detection. A lidar map of bee density shows good correlation with maps of chemical plume strength and bee density determined by visual and video counts. The co-polarized lidar backscatter signal was found to be more effective than the(More)
The potential of microorganisms for enhancing carbon capture and storage (CCS) via mineral-trapping (where dissolved CO(2) is precipitated in carbonate minerals) and solubility trapping (as dissolved carbonate species in solution) was investigated. The bacterial hydrolysis of urea (ureolysis) was investigated in microcosms including synthetic brine (SB)(More)
A primary environmental risk from unconventional oil and gas development or carbon sequestration is subsurface fluid leakage in the near wellbore environment. A potential solution to remediate leakage pathways is to promote microbially induced calcium carbonate precipitation (MICP) to plug fractures and reduce permeability in porous materials. The advantage(More)
An instrument is demonstrated that can be used for optical detection of honeybees in a cluttered environment. The instrument uses a continuous-wave diode laser with a center wavelength of 808 nm and an output power of 28 mW as the laser transmitter source. Light scattered from moving honeybee wings will produce an intensity-modulated signal at a(More)
Mitigation strategies for sealing high permeability regions in cap rocks, such as fractures or improperly abandoned wells, are important considerations in the long term security of geologically stored carbon dioxide (CO(2)). Sealing technologies using low-viscosity fluids are advantageous in this context since they potentially reduce the necessary injection(More)
This study develops a probability framework to evaluate subsurface risks associated with commercial-scale carbon sequestration in the Kevin Dome, Montana. Limited knowledge of the spatial distribution of physical attributes of the storage reservoir and the confining rocks in the area requires using regional data to estimate project risks during the pre-site(More)
[1] We tested the ability of eddy covariance (EC) to detect, locate, and quantify surface CO2 flux leakage signals within a background ecosystem. For 10 days starting on 9 July 2007, and for 7 days starting on 3 August 2007, 0.1 (Release 1) and 0.3 (Release 2) t CO2 d , respectively, were released from a horizontal well 100 m in length and 2.5 m in depth(More)
a r t i c l e i n f o Measurement of spectral reflectance provides a fast and nondestructive method of stress detection in vegetation. In this shallow subsurface CO 2 release experiment to simulate CO 2 leakage of geologically sequestered CO 2 , the radiometric responses of plants to elevated soil CO 2 concentration were monitored using a spectroradiometer.(More)