Lee E. Miller

Learn More
1. We recorded from 239 neurons located in the magnocellular division of the red nucleus of four alert macaque monkeys. At the same time, we recorded electromyographic (EMG) signals from as many as twenty electrodes chronically implanted on muscles of the shoulder, arm, forearm and hand. We recorded EMG signals for periods ranging from several months to a(More)
In order to understand how the central nervous system controls the kinematics of rapid finger and hand movements, we studied the motions of subjects turning a knob to light-emitting diode targets, similar to tuning a radio dial. On many trials, subjects turned the knob with a single, smooth, and regular motion as revealed by the angular position and(More)
Reaching with the arm to a newly appearing target is usually preceded by a saccadic eye movement. Neurons in the superior colliculus (SC) constitute one important brain structure controlling saccades. Yet, the SC also contains reach neurons activated during arm movements, whose location extends also deeper into the underlying mesencephalic reticular(More)
We have adopted an analysis that produces a post hoc prediction of the time course of electromyogram (EMG) activity from the discharge of ensembles of neurons recorded sequentially from the primary motor cortex (M1) of a monkey. Over several recording sessions, we collected data from 50 M1 neurons and several distal forelimb muscles during a stereotyped(More)
Two monkeys were trained to point to targets and to retrieve fruit bits from a Kluver board, bottles, and tubes. Once proficient in the tasks, the macaques underwent aseptic surgical implantation of a recording chamber over the cerebellar nuclei on the side of their preferred hand. After recovery from surgery, a series of mapping penetrations were completed(More)
Despite the abundant experimental evidence for the irregular, multipeaked velocity profiles that often characterize rapid human limb movements, there is currently little agreement on how to interpret these phenomena. While in some studies these irregularities have been interpreted as reflecting a continuous control process, in others the irregularities are(More)
A robust identification algorithm has been developed for linear, time-invariant, multiple-input single-output systems, with an emphasis on how this algorithm can be used to estimate the dynamic relationship between a set of neural recordings and related physiological signals. The identification algorithm provides a decomposition of the system output such(More)
Many different kinematic and kinetic signals have been proposed as possible variables under the control of the primary motor cortex. Despite the presence of direct projections to motor neurons, muscle activation has received less attention as a controlled variable. Furthermore, although it is well known that descending fibers project to multiple motor(More)
Rapid targeted movements are subject to special control considerations, since there may be inadequate time available for either visual or somatosensory feedback to be effective. In our experiments, subjects rapidly rotated a knob to align a pointer to one of several targets. We recognized three different types of movement segments: the primary movement, and(More)
We studied the discharge of neurons from both the superior colliculus (SC) and the underlying mesencephalic reticular formation (MRF) and its relation to the simultaneously recorded activity of 11 arm muscles. The 242 neurons tested with a center-out reach task yielded 2,586 pairs of neuron/muscle cross-correlations (normalized, such that perfect(More)