Leda M Cummings

Learn More
The parasite Plasmodium falciparum is responsible for hundreds of millions of cases of malaria, and kills more than one million African children annually. Here we report an analysis of the genome sequence of P. falciparum clone 3D7. The 23-megabase nuclear genome consists of 14 chromosomes, encodes about 5,300 genes, and is the most (A + T)-rich genome(More)
Species of malaria parasite that infect rodents have long been used as models for malaria disease research. Here we report the whole-genome shotgun sequence of one species, Plasmodium yoelii yoelii, and comparative studies with the genome of the human malaria parasite Plasmodium falciparum clone 3D7. A synteny map of 2,212 P. y. yoelii contiguous DNA(More)
BLAST (Basic Local Alignment Search Tool) searches against DNA and protein sequence databases have become an indispensable tool for biomedical research. The proliferation of the genome sequencing projects is steadily increasing the fraction of genome-derived sequences in the public databases and their importance as a public resource. We report here the(More)
Chromosome 2 of Plasmodium falciparum was sequenced; this sequence contains 947,103 base pairs and encodes 210 predicted genes. In comparison with the Saccharomyces cerevisiae genome, chromosome 2 has a lower gene density, introns are more frequent, and proteins are markedly enriched in nonglobular domains. A family of surface proteins, rifins, that may(More)
Serial analysis of gene expression (SAGE) was applied to the malarial parasite Plasmodium falciparum to characterize the comprehensive transcriptional profile of erythrocytic stages. A SAGE library of approximately 8335 tags representing 4866 different genes was generated from 3D7 strain parasites. Basic local alignment search tool analysis of high(More)
The advent of high-throughput methods for the analysis of global gene expression, together with the Malaria Genome Project open up new opportunities for furthering our understanding of the fundamental biology and virulence of the malaria parasite. Serial analysis of gene expression (SAGE) is particularly well suited for malarial systems, as the genomes of(More)
The application of network centric operations principles to human supervisory control (HSC) domains means that humans are increasingly being asked to manage multiple simultaneous HSC processes. However, increases in the number of available information sources, volume of information and operational tempo, all which place higher cognitive demands on(More)
During the establishment of a YAC contig for the type 1 neurofibromatosis (NF1) region on human chromosome 17q11.2, several YAC clones were isolated which originated from a different chromosome but which retained strong homology to NF1 coding regions (Marchuk et al., 1992). Fluorescence in situ hybridization (FISH) using these clones has identified(More)
Detailed restriction maps of microbial genomes are a valuable resource in genome sequencing studies but are toilsome to construct by contig construction of maps derived from cloned DNA. Analysis of genomic DNA enables large stretches of the genome to be mapped and circumvents library construction and associated cloning artifacts. We used pulsed-field gel(More)
An international consortium has been formed to sequence the entire genome of the human malaria parasite Plasmodium falciparum. We sequenced chromosome 2 of clone 3D7 using a shotgun sequencing strategy. Chromosome 2 is 947 kb in length, has a base composition of 80.2% A + T, and contains 210 predicted genes. In comparison to the Saccharomyces cerevisiae(More)