Leandro C. Oliveira

Learn More
The concept of a funneled energy landscape and the principle of minimal frustration are the theoretical foundation justifying the applicability of structure-based models. In simulations, a protein is commonly reduced to a C(alpha)-bead representation. These simulations are sufficient to predict the geometrical features of the folding mechanism observed(More)
Enzymes that cleave the xyloglucan backbone at unbranched glucose residues have been identified in GH families 5, 7, 12, 16, 44, and 74. Fungi produce enzymes that populate 20 of 22 families that are considered critical for plant biomass deconstruction. We searched for GH12-encoding genes in 27 Eurotiomycetes genomes. After analyzing 50 GH12-related(More)
C-terminal Src kinase (Csk) phosphorylates and down-regulates the Src family tyrosine kinases (SFKs). Crystallographic studies of Csk found an unusual arrangement of the SH2 and SH3 regulatory domains about the kinase core, forming a compact structure. However, recent structural studies of mutant Csk in the presence of an inhibitor indicate that the enzyme(More)
Protein kinases use ATP as a phosphoryl donor for the posttranslational modification of signaling targets. It is generally thought that the binding of this nucleotide induces conformational changes leading to closed, more compact forms of the kinase domain that ideally orient active-site residues for efficient catalysis. The kinase domain is oftentimes(More)
Beta-glucosidases (BGLs) are enzymes of great potential for several industrial processes, since they catalyze the cleavage of glucosidic bonds in cellobiose and other short cellooligosaccharides. However, features such as good stability to temperature, pH, ions and chemicals are required characteristics for industrial applications. This work aimed to(More)
Arachnids have a venom apparatus and secrete a complex chemical mixture of low molecular mass organic molecules, enzymes and polypeptide neurotoxins designed to paralyze or kill their prey. Most of these toxins are specific for membrane voltage-gated sodium channels, although some may also target calcium or potassium channels and other membrane receptors.(More)
α-l-Arabinofuranosidases (α-l-Abfases, EC 3.2.1.55) display a broad specificity against distinct glycosyl moieties in branched hemicellulose and recent studies have demonstrated their synergistic use with cellulases and xylanases for biotechnological processes involving plant biomass degradation. In this study, we examined the structural organization of the(More)
A lattice model is used to study mutations and compacting effects on protein folding rates and folding temperature. In the context of protein evolution, we address the question regarding the best scenario for a polypeptide chain to fold: either a fast nonspecific collapse followed by a slow rearrangement to form the native structure or a specific collapse(More)
Termites can degrade up to 90% of the lignocellulose they ingest using a repertoire of endogenous and symbiotic degrading enzymes. Termites have been shown to secrete two main glycoside hydrolases, which are GH1 (EC 3.2.1.21) and GH9 (EC 3.2.1.4) members. However, the molecular mechanism for lignocellulose degradation by these enzymes remains poorly(More)
Multifunctional enzyme engineering can improve enzyme cocktails for emerging biofuel technology. Molecular dynamics through structure-based models (SB) is an effective tool for assessing the tridimensional arrangement of chimeric enzymes as well as for inferring the functional practicability before experimental validation. This study describes the(More)