Learn More
Heat shock factors (HSFs) are essential for all organisms to survive exposures to acute stress. They are best known as inducible transcriptional regulators of genes encoding molecular chaperones and other stress proteins. Four members of the HSF family are also important for normal development and lifespan-enhancing pathways, and the repertoire of HSF(More)
Heat shock factor 1 (HSF1) is essential for protecting cells from protein-damaging stress associated with misfolded proteins and regulates the insulin-signaling pathway and aging. Here, we show that human HSF1 is inducibly acetylated at a critical residue that negatively regulates DNA binding activity. Activation of the deacetylase and longevity factor(More)
To dampen proteotoxic stresses and maintain protein homeostasis, organisms possess a stress-responsive molecular machinery that detects and neutralizes protein damage. A prominent feature of stressed cells is the increased synthesis of heat shock proteins (Hsps) that aid in the refolding of misfolded peptides and restrain protein aggregation.(More)
The heat shock response, characterized by increased expression of heat shock proteins (Hsps) is induced by exposure of cells and tissues to extreme conditions that cause acute or chronic stress. Hsps function as molecular chaperones in regulating cellular homeostasis and promoting survival. If the stress is too severe, a signal that leads to programmed cell(More)
Heat shock factor 1 (HSF1) is a serine-rich constitutively phosphorylated mediator of the stress response. Upon stress, HSF1 forms DNA-binding trimers, relocalizes to nuclear granules, undergoes inducible phosphorylation and acquires the properties of a transactivator. HSF1 is phosphorylated on multiple sites, but the sites and their function have remained(More)
The mammalian hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription factor that controls the induction of several genes involved in glycolysis, erythropoiesis, and angiogenesis when cells are exposed to hypoxic conditions. Until now, the expression and function of HIF-1alpha have not been studied in fish, which experience wide fluctuations of(More)
SUMO (small ubiquitin-like modifier) modification regulates many cellular processes, including transcription. Although sumoylation often occurs on specific lysines within the consensus tetrapeptide PsiKxE, other modifications, such as phosphorylation, may regulate the sumoylation of a substrate. We have discovered PDSM (phosphorylation-dependent sumoylation(More)
The heat shock response is a defense reaction activated by proteotoxic damage induced by physiological or environmental stress. Cells respond to the proteotoxic damage by elevated expression of heat shock proteins (Hsps) that function as molecular chaperones and maintain the vital homeostasis of protein folds. Heat shock factors (HSFs) are the main(More)
We examined the effects of heat stress (from 18 degreesC to 26 degreesC) and low oxygen tension (1% O2=1 kPa) on protein synthesis in primary cultures of hepatocytes, gill epithelial cells and fibroblast-like RTG-2 cells of rainbow trout Oncorhynchus mykiss. All these cell types displayed elevated levels of 67, 69 and 92 kDa proteins, whereas a 104 kDa(More)
Unless mitigated, external and physiological stresses are detrimental for cells, especially in mitosis, resulting in chromosomal missegregation, aneuploidy, or apoptosis. Heat shock proteins (Hsps) maintain protein homeostasis and promote cell survival. Hsps are transcriptionally regulated by heat shock factors (HSFs). Of these, HSF1 is the master regulator(More)