Le Ou-Yang

Learn More
Revealing functional units in protein-protein interaction (PPI) networks are important for understanding cellular functional organization. Current algorithms for identifying functional units mainly focus on cohesive protein complexes which have more internal interactions than external interactions. Most of these approaches do not handle overlaps among(More)
Proteins dynamically interact with each other to perform their biological functions. The dynamic operations of protein interaction networks (PPI) are also reflected in the dynamic formations of protein complexes. Existing protein complex detection algorithms usually overlook the inherent temporal nature of protein interactions within PPI networks.(More)
Identification of protein complexes can help us get a better understanding of cellular mechanism. With the increasing availability of large-scale protein-protein interaction (PPI) data, numerous computational approaches have been proposed to detect complexes from the PPI networks. However, most of the current approaches do not consider overlaps among(More)
Detecting protein complexes from protein-protein interaction (PPI) networks is a challenging task in computational biology. A vast number of computational methods have been proposed to undertake this task. However, each computational method is developed to capture one aspect of the network. The performance of different methods on the same network can differ(More)
Recently, several studies have drawn attention to the determination of a minimum set of driver proteins that are important for the control of the underlying protein-protein interaction (PPI) networks. In general, the minimum dominating set (MDS) model is widely adopted. However, because the MDS model does not generate a unique MDS configuration, multiple(More)
The identification of protein-protein interactions contributes greatly to the understanding of functional organization within cells. With the development of affinity purification-mass spectrometry (AP-MS) techniques, several computational scoring methods have been proposed to detect protein interactions from AP-MS data. However, most of the current methods(More)
The human habitat is a host where microbial species evolve, function, and continue to evolve. Elucidating how microbial communities respond to human habitats is a fundamental and critical task, as establishing baselines of human microbiome is essential in understanding its role in human disease and health. Recent studies on healthy human microbiome focus on(More)
Identification of protein complexes is fundamental for understanding the cellular functional organization. With the accumulation of physical protein-protein interaction (PPI) data, computational detection of protein complexes from available PPI networks has drawn a lot of attentions. While most of the existing protein complex detection algorithms focus on(More)
To facilitate advances in personalized medicine, it is important to detect predictive, stable and interpretable biomarkers related with different clinical characteristics. These clinical characteristics may be heterogeneous with respect to underlying interactions between genes. Usually, traditional methods just focus on detection of differentially expressed(More)
Protein complexes carry out nearly all signaling and functional processes within cells. The study of protein complexes is an effective strategy to analyze cellular functions and biological processes. With the increasing availability of proteomics data, various computational methods have recently been developed to predict protein complexes. However,(More)