Learn More
Proteins dynamically interact with each other to perform their biological functions. The dynamic operations of protein interaction networks (PPI) are also reflected in the dynamic formations of protein complexes. Existing protein complex detection algorithms usually overlook the inherent temporal nature of protein interactions within PPI networks.(More)
Detecting protein complexes from protein-protein interaction (PPI) networks is a challenging task in computational biology. A vast number of computational methods have been proposed to undertake this task. However, each computational method is developed to capture one aspect of the network. The performance of different methods on the same network can differ(More)
Revealing functional units in protein-protein interaction (PPI) networks are important for understanding cellular functional organization. Current algorithms for identifying functional units mainly focus on cohesive protein complexes which have more internal interactions than external interactions. Most of these approaches do not handle overlaps among(More)
Identification of protein complexes can help us get a better understanding of cellular mechanism. With the increasing availability of large-scale protein-protein interaction (PPI) data, numerous computational approaches have been proposed to detect complexes from the PPI networks. However, most of the current approaches do not consider overlaps among(More)
Recently, several studies have drawn attention to the determination of a minimum set of driver proteins that are important for the control of the underlying protein-protein interaction (PPI) networks. In general, the minimum dominating set (MDS) model is widely adopted. However, because the MDS model does not generate a unique MDS configuration, multiple(More)
The human habitat is a host where microbial species evolve, function, and continue to evolve. Elucidating how microbial communities respond to human habitats is a fundamental and critical task, as establishing baselines of human microbiome is essential in understanding its role in human disease and health. Recent studies on healthy human microbiome focus on(More)
The identification of protein-protein interactions contributes greatly to the understanding of functional organization within cells. With the development of affinity purification-mass spectrometry (AP-MS) techniques, several computational scoring methods have been proposed to detect protein interactions from AP-MS data. However, most of the current methods(More)
Identification of protein complexes is fundamental for understanding the cellular functional organization. With the accumulation of physical protein-protein interaction (PPI) data, computational detection of protein complexes from available PPI networks has drawn a lot of attentions. While most of the existing protein complex detection algorithms focus on(More)
To facilitate advances in personalized medicine, it is important to detect predictive, stable and interpretable biomarkers related with different clinical characteristics. These clinical characteristics may be heterogeneous with respect to underlying interactions between genes. Usually, traditional methods just focus on detection of differentially expressed(More)
With the increasing availability of protein interaction data, various computational methods have been developed to predict protein complexes. However, different computational methods may have their own advantages and limitations. Ensemble clustering has thus been studied to minimize the potential bias and risk of individual methods and generate prediction(More)