Learn More
Fluorescence resonance energy transfer (FRET) between a quantum dot as donor and an organic fluorophore as acceptor has been widely used for detection of nucleic acids and proteins. In this paper, we developed a new method, characterized by 605-nm quantum dot (605QD) fluorescence intensity increase and corresponding Cy5 fluorescence intensity decrease, to(More)
This study reported the hexavalent chromium removal by untreated Mucor racemosus biomass and the possible mechanism of Cr (VI) removal to the biomass. The optimum pH, biomass dose, initial Cr (VI) concentration and contact time were investigated thoroughly to optimize the removal condition. The metal removal by the biomass was strongly affected by pH and(More)
The main goal of this study was to exploit low-cost and efficient sorbents for the removal and recovery of Cr(VI) in wastewater. Three supports of sawdust, polyurethane and alginate were applied to immobilize living and dead R. cohnii cells, respectively. There was a distinct increase in the Cr(VI) removal efficiency before and after the HCl-pretreatment.(More)
The purpose of this study was to investigate the potential of copper-iron bimetallic particles supported sulfate-reducing bacteria (SRB) in enhancing the reduction of Cu(2+) and Zn(2+) in effluent. The results showed that the copper-iron bimetallic particles can enhance Cu(2+) and Zn(2+) removal and the resistance of the sulfate-reducing bacteria towards(More)
A new and simple method was developed to detect adenosine triphosphate (ATP) by using a DNAzyme-aptamer sensor. The DNAzyme used was a single-stranded DNA that could combine with hemin. The aptamer, a single, short nucleic acid sequence that can specifically bind with many targets, was an anti-ATP aptamer. Two DNA sequences were designed: i) a functional(More)
The goal of this study was to develop an applied technique for the removal and recovery of heavy metal in wastewater. It is novel that the Cr(VI) could be adsorbed and recovered by bio-functional magnetic beads. Furthermore, the magnetic separation technology would make their separation more convenient. The beads were constituted by the powder of Rhizopus(More)
In this paper, a panel of single-stranded DNA aptamers with high affinity and specificity against Salmonella Paratyphi A was selected from an enriched oligonucleotide pool by a whole-cell-Systematic Evolution of Ligands by Exponential Enrichment (SELEX) procedure, during which four other Salmonella serovars were used as counter-selection targets. It was(More)
DNA molecules are attached onto carboxylate-terminated alkanethiol self-assembled monolayers (SAMs) preformed at gold surfaces via the N-hydroxysulfosuccinimide (NHS)/1-(3-(dimethylamino)propyl)-3ethylcarbodiimide hydrochloride (EDC) cross-linking reaction. Cyclic voltammetry, quartz crystal microbalance (QCM), and atomic force microscopy (AFM) were used to(More)
In this paper, a novel and cost-effective homogeneous detection method was constructed for the detection of genomic DNA and Staphylococcus aureus (S. aureus), based on the noncovalent assembly of DNAzyme-labeled detection probe and single-walled carbon nanotubes (SWNTs). When the target genomic DNA and hemin was existed in the detection solution, the(More)
In this work, single-stranded DNA aptamers that are highly specific to enterotoxigenic Salmonella paratyphi A were obtained from an enriched oligonucleotide pool using Systematic Evolution of Ligands by Exponential Enrichment (SELEX) to target the flagellin protein. The selected aptamers were confirmed to have high sensitivity and specificity to the(More)