Learn More
The glaucomas are neurodegenerative diseases involving death of retinal ganglion cells and optic nerve head excavation. A major risk factor for this neurodegeneration is a harmfully elevated intraocular pressure (IOP). Human glaucomas are typically complex, progressive diseases that are prevalent in the elderly. Family history and genetic factors are(More)
BACKGROUND The glaucomas are a common but incompletely understood group of diseases. DBA/2J mice develop a pigment liberating iris disease that ultimately causes elevated intraocular pressure (IOP) and glaucoma. We have shown previously that mutations in two genes, Gpnmb and Tyrp1, initiate the iris disease. However, mechanisms involved in the subsequent(More)
BACKGROUND DBA/2J (D2) mice develop an age-related form of glaucoma. Their eyes progressively develop iris pigment dispersion and iris atrophy followed by increased intraocular pressure (IOP) and glaucomatous optic nerve damage. Mutant alleles of the Gpnmb and Tyrp1 genes are necessary for the iris disease, but it is unknown whether alleles of other D2(More)
There is increasing evidence that defects in DNA double-strand-break (DSB) repair can cause chromosome instability, which may result in cancer. To identify novel DSB repair genes in mice, we performed a phenotype-driven mutagenesis screen for chromosome instability mutants using a flow cytometric peripheral blood micronucleus assay. Micronucleus levels were(More)
BACKGROUND The promyelocytic leukemia zinc finger gene Plzf (also called Zbtb16, Zfp145 or Green's luxoid) belongs to the POZ/zinc-finger family of transcription factors. It contains a BTB/POZ domain that mediates epigenetic transcriptional repression. PLZF is essential for proper skeleton patterning and male germ cell renewal. Two alleles have been(More)
Uptake signal sequences are DNA motifs that promote DNA uptake by competent bacteria in the family Pasteurellaceae and the genus Neisseria. The genomes of these bacteria contain many copies of their canonical uptake sequence (often >100-fold overrepresentation), so the bias of the uptake machinery causes cells to prefer DNA derived from close relatives over(More)
  • 1