Learn More
This paper describes PRIMA, an algorithm for generating provably passive reduced order N-port models for RLC interconnect circuits. It is demonstrated that, in addition to requiring macromodel stability, macromodel passivity is needed to guarantee the overall circuit stability once the active and passive driver/load models are connected. PRIMA extends the(More)
For digital system designs the propagation delays due to the physical interconnect can have a significant, even dominant, impact on performance. Timing analyzers attempt to capture the effect of the interconnect on the delay with a simplified model, typically an RC tree. For mid-frequency MOS integrated circuits the RC tree methods can predict the delay to(More)
The Elmore delay is an extremely popular delay metric, particularly for RC tree analysis. The widespread usage of this metric is mainly attributable to it being the most accurate delay measure that is a simple analytical function of the circuit parameters. The only drawbacks to this delay metric are the uncertainty as to whether it is an optimistic or a(More)
Current technology trends have led to the growing impact of both inter-die and intra-die process variations on circuit performance. While it is imperative to model parameter variations for sub-100nm technologies to produce an upper bound prediction on timing, it is equally important to consider the correlation of these variations for the bound to be useful.(More)
In this paper we develop a gate level model that allows us to determinethe best and worst case delay when there is dominant interconnectcoupling. Assuming that the gate input windows oftransition are known, the model can predict the worst and bestcase noise, as well as the worst and best case impact on delay. Thisis done in terms of a Ceff based gate model(More)