Learn More
The nuclear hormone receptor peroxisome proliferator-activated receptor gamma (PPAR gamma; NR1C3) plays a central role in adipogenesis and is the molecular target of the thiazolidinedione class of antidiabetic drugs. To overcome the well-known shortcomings of thiazolidinediones, we have identified INT131 (formerly T131 and AMG131) as a potent selective(More)
We recently reported the discovery of AM-8553 (1), a potent and selective piperidinone inhibitor of the MDM2-p53 interaction. Continued research investigation of the N-alkyl substituent of this series, focused in particular on a previously underutilized interaction in a shallow cleft on the MDM2 surface, led to the discovery of a one-carbon tethered sulfone(More)
The development of the structurally complex MDM2/p53 inhibitor AM-8553 was impeded by the low yield of the initial synthesis. A second generation synthesis is described that features a Noyori dynamic kinetic resolution, a highly diastereoselective allylation, and a novel oxazoline-assisted piperidinone forming reaction to provide AM-8553 in 35.6% yield and(More)
Oxidation of (+) camphor by cytochrome P-450soy-enriched intact cells of Streptomyces griseus resulted in the formation of one major and several minor metabolites. The minor metabolites were identified as 3-endo-hydroxycamphor (2%), 5-endo-hydroxycamphor (7%), 5-exo-hydroxycamphor (9%), 2,5-diketobornane (2%), and camphorquinone (3%). The major metabolite(More)
The discovery, structure-based design, synthesis, and optimization of NIK inhibitors are described. Our work began with an HTS hit, imidazopyridinyl pyrimidinamine 1. We utilized homology modeling and conformational analysis to optimize the indole scaffold leading to the discovery of novel and potent conformationally constrained inhibitors such as compounds(More)
We previously reported the discovery of potent and selective morpholinone and piperidinone inhibitors of the MDM2-p53 interaction. These inhibitors have in common a carboxylic acid moiety that engages in an electrostatic interaction with MDM2-His96. Our continued search for potent and diverse inhibitors led to the discovery of novel replacements for these(More)
PPARγ is a member of the nuclear hormone receptor family and plays a key role in the regulation of glucose homeostasis. This Letter describes the discovery of a novel chemical class of diarylsulfonamide partial agonists that act as selective PPARγ modulators (SPPARγMs) and display a unique pharmacological profile compared to the thiazolidinedione (TZD)(More)
A general way of improving the potency of CXCR3 antagonists with fused hetero-bicyclic cores was identified. Optimization efforts led to the discovery of a series of imidazo-pyrazine derivatives with improved pharmacokinetic properties in addition to increased potency. The efficacy of the lead compound 21 is evaluated in a mouse lung inflammation model.
We describe the structural optimization of a lead compound 1 that exhibits dual inhibitory activities against FLT3 and CDK4. A series of pyrido[4',3':4,5]pyrrolo[2,3-d]pyrimidine derivatives was synthesized, and SAR analysis, using cell-based assays, led to the discovery of 28 (AMG 925), a potent and orally bioavailable dual inhibitor of CDK4 and FLT3,(More)