Lawrence P. Hernandez

Learn More
While a vast literature and long tradition of examining the scaling of locomotory function exists, scaling studies on feeding mechanics are relatively rare. A recent increase in research activity examining the scaling of feeding kinematics has led to conflicting results. These divergent findings may be due to the inherent differences in the biophysical(More)
We review the origins, prominent innovations, and major patterns of diversification in suction feeding by vertebrates. Non-vertebrate chordates and larval lamprey suspension-feed by capturing small particles in pharyngeal mucous. In most of these lineages the gentle flows that transport particles are generated by buccal cilia, although larval lamprey and(More)
Premaxillary protrusion in cypriniform fishes involves rotation of the kinethmoid, an unpaired skeletal element in the dorsal midline of the rostrum. No muscles insert directly onto the kinethmoid, so its rotation must be caused by the movement of other bones. In turn, the kinethmoid is thought to push on the ascending processes of the premaxillae,(More)
Cyprinodontiforms are a diverse and speciose order that includes topminnows, pupfishes, swordtails, mosquitofishes, guppies, and mollies. Sister group to the Beloniformes and Atheriniformes, Cyprinodontiformes contains approximately twice the number of species of these other two orders combined. Recent studies suggest that this group is well suited to(More)
To expand the buccal cavity, many suction-feeding fishes rely on a considerable contribution from dorsal rotation of the dorsal part of the head including the brains, eyes, and several bones forming the braincase and skull roof (jointly referred to as the neurocranium). As the neurocranium takes up a large part of the total mass of the head, this rotation(More)
Cypriniformes (which includes the minnows, carps, loaches, algae-eaters, stone loaches, and suckers) is a morphologically diverse and incredibly speciose order of teleosts. It has been suggested that a number of evolutionary innovations, key to improved hearing and feeding, have played an important role in cypriniform fishes' success. One such innovation,(More)
While much of the functional work on suction feeding has involved members of Acanthopterygii, an earlier cypriniform radiation led to over 3200 species filling nearly every freshwater trophic niche. Within the great majority of acanthomorph clades that have been investigated suction feeding and the underlying morphology responsible for the generation of(More)
Upper jaw protrusion is hypothesized to improve feeding performance in teleost fishes by enhancing suction production and stealth of the feeding event. However, many cyprinodontiform fishes (mid-water feeders, such as mosquitofish, killifish, swordtails, mollies and pupfish) use upper jaw protrusion for "picking" prey out of the water column or off the(More)
Substrate-feeding teleosts show multiple, independent evolutionary acquisitions of intramandibular bending (bending within the lower jaw)—a behavior that likely enhances performance when feeding on attached or encrusting food items. However, intramandibular bending has only been quantified for marine teleosts. Here, we examine substrate feeding in eight(More)
Piscivory in fishes is often associated with the evolution of highly elongate jaws that achieve a large mouth opening, or gape. Belonesox belizanus, the pike killifish, has independently evolved this morphology, which is derived from short-jawed poeciliids within the Cyprinodontiformes. Using kinematic analysis of high-speed video footage, we observed a(More)