Lawrence M. Sayre

Learn More
Damage from free radicals has been demonstrated in susceptible neuronal populations in cases of Alzheimer disease. In this study, we investigated whether iron, a potent source of the highly reactive hydroxyl radical that is generated by the Fenton reaction with H2O2, might contribute to the source of radicals in Alzheimer disease. We found, using a modified(More)
Increasing evidence suggests that oxidative damage to proteins and other macromolecules is a salient feature of the pathology of Alzheimer's disease. Establishing the source of oxidants is key to understanding what role they play in the pathogenesis of Alzheimer's disease, and one way to examine this issue is to determine which oxidants are involved in(More)
Recent studies have demonstrated oxidative damage is one of the salient features of Alzheimer's disease (AD). In these studies, glycoxidation adduction to and direct oxidation of amino acid side chains have been demonstrated in the lesions and neurons of AD. To address whether lipid damage may also play an important pathogenic role, we raised rabbit(More)
There is increasing awareness of the ubiquitous role of oxidative stress in neurodegenerative disease states. A continuing challenge is to be able to distinguish between oxidative changes that occur early in the disease from those that are secondary manifestations of neuronal degeneration. This perspective highlights the role of oxidative stress in(More)
There is a great deal of evidence to support a pathogenic role of oxidative stress in Alzheimer's disease (AD), but the sources of reactive oxygen species have not been directly demonstrated. In this study, using a novel in situ detection system, we show that neurofibrillary tangles and senile plaques are major sites for catalytic redox reactivity.(More)
The age-related neurodegenerative diseases exemplified by Alzheimer&hyp;s disease (AD), Lewy body diseases such as Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington&hyp;s disease are characterized by the deposition of abnormal forms of specific proteins in the brain. Although several factors appear to underlie the pathological(More)
During aging long-lived proteins accumulate specific post-translational modifications. One family of modifications, termed Maillard reaction products, are initiated by the condensation between amino groups of proteins and reducing sugars. Protein modification by the Maillard reaction is associated with crosslink formation, decreased protein solubility, and(More)
The pathological presentation of Alzheimer's disease, the leading cause of senile dementia, involves regionalized neuronal death and an accumulation of intracellular and extracellular filamentous protein aggregates that form lesions termed neurofibrillary tangles and senile plaques, respectively. Several independent parameters have been suggested as the(More)
Modification of proteins in conditions of oxidative stress can contribute to protein dysfunction or tissue damage and disease progression. Bifunctional, most often alpha,beta-unsaturated carbonyl compounds such as 4-hydroxy-2-nonenal (HNE), 4-oxo-2-nonenal (ONE), and acrolein, generated from oxidation of polyunsaturated fatty acids (PUFAs), readily bind to(More)
Advanced glycation end products are a diverse class of posttranslational modifications, stemming from reactive aldehyde reactions, that have been implicated in the pathogenesis of a number of degenerative diseases. Because advanced glycation end products are accelerated by, and result in formation of, oxygen-derived free radicals, they represent an(More)