Learn More
Type 2 diabetes mellitus (DM) is characterized by insulin resistance and pancreatic beta cell dysfunction. In high-risk subjects, the earliest detectable abnormality is insulin resistance in skeletal muscle. Impaired insulin-mediated signaling, gene expression, glycogen synthesis, and accumulation of intramyocellular triglycerides have all been linked with(More)
The broad nature of insulin resistant glucose metabolism in skeletal muscle of patients with type 2 diabetes suggests a defect in the proximal part of the insulin signaling network. We sought to identify the pathways compromised in insulin resistance and to test the effect of moderate exercise on whole-body and cellular insulin action. We conducted(More)
For many years, the Randle glucose fatty acid cycle has been invoked to explain insulin resistance in skeletal muscle of patients with type 2 diabetes or obesity. Increased fat oxidation was hypothesized to reduce glucose metabolism. The results of a number of investigations have shown that artificially increasing fat oxidation by provision of excess lipid(More)
AIMS/HYPOTHESIS This study aimed to identify genes that are expressed in skeletal muscle, encode proteins with functional significance in mitochondria, and are associated with type 2 diabetes. METHODS We screened for differentially expressed genes in skeletal muscle of Psammomys obesus (Israeli sand rats), and prioritised these on the basis of genomic(More)
We examined the effect of pioglitazone on abdominal fat distribution to elucidate the mechanisms via which pioglitazone improves insulin resistance in patients with type 2 diabetes mellitus. Thirteen type 2 diabetic patients (nine men and four women; age, 52 +/- 3 yr; body mass index, 29.0 +/- 1.1 kg/m(2)), who were being treated with a stable dose of(More)
Increased intramyocellular lipid concentrations are thought to play a role in insulin resistance, but the precise nature of the lipid species that produce insulin resistance in human muscle are unknown. Ceramides, either generated via activation of sphingomyelinase or produced by de novo synthesis, induce insulin resistance in cultured cells by inhibitory(More)
OBJECTIVE To elucidate the effects of pioglitazone treatment on glucose and lipid metabolism in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS A total of 23 diabetic patients (age 30-70 years BMI < 36 kg/m2) who being treated with a stable dose of sulfonylurea were randomly assigned to receive either placebo (n = 11) or pioglitazone (45(More)
AIMS/HYPOTHESIS We aimed to examine the mechanisms by which rosiglitazone improves glycaemic control in Type II (non-insulin-dependent) diabetic patients. METHODS Altogether 29 diet-treated diabetic patients were assigned at random to rosiglitazone, 8 mg/day (n = 15), or placebo (n = 14) for 12 weeks. Patients received 75 g OGTT and two-step euglycaemic(More)
To determine the dose-response characteristics for the effects of insulin on glucose production, glucose utilization, and overall glucose metabolism in normal man, 15 healthy subjects were infused with insulin for 8 h at sequential rates ranging from 0.2 to 5.0 mU.kg-1.min-1; each rate was used for 2 h. Glucose production and utilization were measured(More)