Lawrence E. Band

Learn More
Chloride concentrations are increasing at a rate that threatens the availability of fresh water in the northeastern United States. Increases in roadways and deicer use are now salinizing fresh waters, degrading habitat for aquatic organisms, and impacting large supplies of drinking water for humans throughout the region. We observed chloride concentrations(More)
Although the watershed approach has long been used to study whole-ecosystem function, it has seldom been applied to study human-dominated systems, especially those dominated by urban and suburban land uses. Here we present 3 years of data on nitrogen (N) losses from one completely forested, one agricultural, and six urban/suburban watersheds, and(More)
[1] The adjustment of local vegetation conditions to limiting soil water by either maximizing productivity or minimizing water stress has been an area of central interest in ecohydrology since Eagleson’s classic study. This work has typically been limited to consider one-dimensional exchange and cycling within patches and has not incorporated the effects of(More)
[1] Shallow landslides are a significant hazard in steep, soil-mantled landscapes. During intense rainfall events, the distribution of shallow landslides is controlled by variations in landscape gradient, the frictional and cohesive properties of soil and roots, and the subsurface hydrologic response. While gradients can be estimated from digital elevation(More)
Riparian zones have been found to function as "sinks" for nitrate (NO3-), the most common groundwater pollutant in the U. S., in many areas. The vast majority of riparian research, however, has focused on agricultural watersheds. There has been little analysis of riparian zones in urban watersheds, despite the fact that urban areas are important sources of(More)
Urban landscapes contain a mix of land-use types with different patterns of nitrogen (N) cycling and export. We measured nitrate (NO(3)(-)) leaching and soil:atmosphere nitrous oxide (N(2)O) flux in four urban grassland and eight forested long-term study plots in the Baltimore, Maryland metropolitan area. We evaluated ancillary controls on these fluxes by(More)
Nonpoint source nitrogen (N) pollution is a leading contributor to U.S. water quality impairments. We combined watershed N mass balances and stable isotopes to investigate fate and transport of nonpoint N in forest, agricultural, and urbanized watersheds at the Baltimore Long-Term Ecological Research site. Annual N retention was 55%, 68%, and 82% for(More)
Forest canopy phenology is an important constraint on annual water and carbon budgets, and responds to regional interannual climate variation. In steep terrain, there are complex spatial variations in phenology due to topographic influences on microclimate, community composition, and available soil moisture. In this study, we investigate spatial patterns of(More)
The hydrological recovery of watersheds from disturbances such as ®re and harvest can change the magnitude and distribution of ̄ow paths as the canopy regenerates. The spatial distribution of net water input to the soil±topography system is mediated by vegetation patterns through the processes of interception, evapotranspiration and snowmelt. We have(More)
Thousands of confined animal feeding operations (CAFOs) have been constructed in eastern North Carolina. The fecal waste pit and spray field waste management systems used by these operations are susceptible to flooding in this low-lying region. To investigate the potential that flood events can lead to environmental dispersion of animal wastes containing(More)