#### Filter Results:

- Full text PDF available (28)

#### Publication Year

1996

2016

- This year (0)
- Last 5 years (11)
- Last 10 years (20)

#### Publication Type

#### Co-author

#### Journals and Conferences

#### Key Phrases

Learn More

1 Overview This article is an extremely rapid survey of the modern theory of partial differential equations (PDEs). Sources of PDEs are legion: mathematical physics, geometry, probability theory, continuum mechanics, optimization theory, etc. Indeed, most of the fundamental laws of the physical sciences are partial differential equations and most papers… (More)

- L. C. EVANS, J. SPRUCK
- 2008

We construct a unique weak solution of the nonlinear PDE which asserts each level set evolves in time according to its mean curvature. This weak solution allows us then to define for any compact set Γ o a unique generalized motion by mean curvature, existing for all time. We investigate the various geometric properties and pathologies of this evolution.

We investigate the vanishing viscosity limit for Hamilton-Jacobi PDE with non-convex Hamiltonians, and present a new method to augment the standard viscosity solution approach. The main idea is to introduce a solution σ ε of the adjoint of the formal linearization, and then to integrate by parts with respect to the density σ ε. This procedure leads to a… (More)

We propose a new method for showing C 1,α regularity for solutions of the infinity Laplacian equation and provide full details of the proof in two dimensions. The proof for dimensions n ≥ 3 depends upon some conjectured local gradient estimates for solutions of certain transformed PDE.

- L. C. Evans, M. Portilheiro
- 2005

Our intention in this paper is to publicize and extend somewhat important work of Plotnikov [P] on the asymptotic limits of solutions of viscous regularizations of an nonlinear diffusion PDE with a cubic nonlinearity. Since the formal limit PDE is in general ill–posed, we expect that the limit solves instead a corresponding diffusion equation with… (More)

In this paper, we show the existence of a unique, regular solution to the flow of the H-system with Dirichlet boundary condition. The solution exists at least up until the time of energy concentration. If this solution satisfies a certain energy inequality, then it can be continued to a global solution with the exception of at most finitely many… (More)

- L. C. EVANS
- 1996

We regard the limit as p ! 1 of the ow governed by the p-Laplacian as providing a simplistic model for the \collapse of an initially unstable sandpile." Upon rescaling to stretch out the initial layer we obtain some simple dynamics and provide fairly explicit solutions in certain cases. In particular we note that such models entail \instanta-neous" mass… (More)

We collect a number of technical assertions and related counterexamples about viscosity solutions of the infinity Laplacian PDE −∆ ∞ u = 0 for ∆ ∞ u := n i,j=1 u x i u x j u x i x j .

This paper considers the p-Laplacian PDE for p = 1, ∞ and some interesting new game theoretic interpretations, due to Kohn–Serfaty [K-S] and to Peres–Schramm–Sheffield–Wilson [P-S-S-W].

We discuss a quantum analogue of Mather's minimization principle for La-grangian dynamics, and provide some formal calculations suggesting the corresponding Euler– Lagrange equation. We then rigorously construct from the dual eigenfunctions of a certain non-selfadjoint operator a candidate ψ for a minimizer, and recover aspects of " weak KAM " theory in the… (More)