Lawrence Ayong

Learn More
Isoprenylated proteins have important functions in cell growth and differentiation of eukaryotic cells. Inhibitors of protein prenylation in malaria have recently shown strong promise as effective antimalarials. In studying protein prenylation in the malaria protozoan parasite Plasmodium falciparum, we have shown earlier that the incubation of P. falciparum(More)
Cyclin-dependent protein kinases (CDKs) are key regulators of the eukaryotic cell cycle and of the eukaryotic transcription machinery. Here we report the characterization of Pfcrk-3 (Plasmodium falciparum CDK-related kinase 3; PlasmoDB identifier PFD0740w), an unusually large CDK-related protein whose kinase domain displays maximal homology to those CDKs(More)
SNARE proteins function as specificity determinants in all eukaryotic vesicle-mediated transport pathways. Although the intra-erythrocytic parasite Plasmodium falciparum is known to target nuclear-encoded proteins via transport vesicles to several destinations within and beyond its plasma membrane, little is known about the role of SNARE proteins in these(More)
Members of the ATP-binding cassette (ABC)-type transporter superfamily have been implicated in multidrug resistance in malaria, and various mechanistic models have been postulated to explain their interaction with diverse antimalarial drugs. To gain insight into the pharmacological benefits of inhibiting ABC-type transporters in malaria chemotherapy, we(More)
A major cause of the paucity of new starting points for drug discovery is the lack of interaction between academia and industry. Much of the global resource in biology is present in universities, whereas the focus of medicinal chemistry is still largely within industry. Open source drug discovery, with sharing of information, is clearly a first step towards(More)
Calcium is relevant for several vital functions in apicomplexan parasites, including host cell invasion, parasite motility and differentiation. The ER (endoplasmic reticulum) and calcium-rich acidocalcisomes have been identified as major calcium stores. Other potential calcium-storage organelles include the Golgi, the mitochondrion, the apicoplast and the(More)
We synthesized 30 lipophilic bisphosphonates and tested them in malaria parasite killing (targeting parasite geranylgeranyl diphosphate synthase, GGPPS) as well in human γδ T cell activation (targeting human farnesyl diphosphate synthase, FPPS). Similar patterns of activity were seen in inhibiting human FPPS and Plasmodium GGPPS, with short to medium(More)
To improve on the diagnosis of onchocerciasis, especially light infections, we developed and evaluated an oncho-dipstick test based on the detection of Onchocerca volvulus specific antigens in urine and tears. The test was able to detect as little as 25 ng/ml of parasite specific antigens in samples and took as little as 3 h. Evaluation of the assay on 456(More)
Polyphosphate is found in every cell, having roles in diverse processes, including differentiation and response to stress. In this study, we characterize a Toxoplasma gondii mutant containing an insertion within the carboxy-terminal end of a homolog of Saccharomyces cerevisiae Vtc2p, a component of the polyphosphate synthetic machinery. Locus TgVTC2 encodes(More)
With more than 40% of the world's population at risk, 200-300 million infections each year, and an estimated 1.2 million deaths annually, malaria remains one of the most important public health problems of mankind today. With the propensity of malaria parasites to rapidly develop resistance to newly developed therapies, and the recent failures of(More)