Lawrence A. Taylor

Learn More
We have determined the abundances of 16O, 17O, and 18O in 31 lunar samples from Apollo missions 11, 12, 15, 16, and 17 using a high-precision laser fluorination technique. All oxygen isotope compositions plot within +/-0.016 per mil (2 standard deviations) on a single mass-dependent fractionation line that is identical to the terrestrial fractionation line(More)
We report new high-precision laser fluorination three-isotope oxygen data for lunar materials. Terrestrial silicates with a range of δO values (−0.5 to 22.9‰) were analyzed to independently determine the slope of the terrestrial fractionation line (TFL; λ=0.5259±0.0008; 95% confidence level). This new TFL determination allows direct comparison of lunar(More)
[1] The Moon Mineralogy Mapper (M), a high‐resolution, high‐precision imaging spectrometer, flew on board India’s Chandrayaan‐1 Mission from October 2008 through August 2009. This paper describes some of the spatial sampling aspects of the instrument, the planned mission, and the mission as flown. We also outline the content and context of the resulting(More)
The lunar rock and mineral characterization consortium (LRMCC) has conducted coordinated mineralogy ⁄petrography ⁄ spectroscopy analyses of a suite of pristine lunar basalts. Four basalt slabs (two low-Ti, two high-Ti) and paired thin sections were analyzed. Thin sections were analyzed for mineralogy ⁄petrography, while the slabs were used to prepare(More)
Remote sensing discoveries of hydroxyl and water on the lunar surface have reshaped our view of the distribution of water and related compounds on airless bodies such as the Moon1–3. The origin of this surface water is unclear4, but it has been suggested that hydroxyl in the lunar regolith can result from the implantation of hydrogen ions by the solar(More)
[1] High‐resolution compositional data from Moon Mineralogy Mapper (M) for the Moscoviense region on the lunar farside reveal three unusual, but distinctive, rock types along the inner basin ring. These are designated “OOS” since they are dominated by high concentrations of orthopyroxene, olivine, and Mg‐rich spinel, respectively. The OOS occur as small(More)
A new combined rhenium-osmium- and platinum-group element data set for basalts from the Moon establishes that the basalts have uniformly low abundances of highly siderophile elements. The data set indicates a lunar mantle with long-term, chondritic, highly siderophile element ratios, but with absolute abundances that are over 20 times lower than those in(More)
Carle M. Pieters*, Joseph Boardman, Bonnie Buratti, Alok Chatterjee, Roger Clark, Tom Glavich, Robert Green, James Head III, Peter Isaacson, Erick Malaret, Thomas McCord, John Mustard, Noah Petro, Cassandra Runyon, Matthew Staid, Jessica Sunshine, Lawrence Taylor, Stefanie Tompkins, Padma Varanasi and Mary White Department of Geological Sciences, Brown(More)
The Moon is thought to be depleted relative to the Earth in volatile elements such as H, Cl and the alkalis. Nevertheless, evidence for lunar explosive volcanism has been used to infer that some lunar magmas exsolved a CO-rich and CO(2)-rich vapour phase before or during eruption. Although there is also evidence for other volatile species on glass(More)
R. O. Green, C. Pieters, P. Mouroulis, M. Eastwood, J. Boardman, T. Glavich, P. Isaacson, M. Annadurai, S. Besse, D. Barr, B. Buratti, D. Cate, A. Chatterjee, R. Clark, L. Cheek, J. Combe, D. Dhingra, V. Essandoh, S. Geier, J. N. Goswami, R. Green, V. Haemmerle, J. Head, L. Hovland, S. Hyman, R. Klima, T. Koch, G. Kramer, A. S. K. Kumar, K. Lee, S. Lundeen,(More)