Laurie L. Parker

Learn More
Entry into mitosis in Schizosaccharomyces pombe is negatively regulated by the wee1+ gene, which encodes a protein kinase with serine-, theonine-, and tyrosine-phosphorylating activities. The wee1+ kinase negatively regulates mitosis by phosphorylating p34cdc2 on tyrosine 15, thereby inactivating the p34cdc2-cyclin B complex. The human homolog of the wee1+(More)
The G2-M phase transition in eukaryotes is regulated by the synergistic and opposing activities of a cascade of distinct protein kinases and phosphatases. This cascade converges on Cdc2, a serine/threonine protein kinase required for entry into mitosis (reviewed in ref. 1). In the fission yeast Schizosaccharomyces pombe, inactivation of the Cdc2/cyclin B(More)
Wild-type Escherichia coli are not able to utilize beta-glucoside sugars because the genes for utilization of these sugars are cryptic. Spontaneous mutations in the cel operon allow its expression and enable the organism to ferment cellobiose, arbutin and salicin. In this report we describe the structure and nucleotide sequence of the cel operon. The cel(More)
p107wee1 is a protein kinase that functions as a dose-dependent inhibitor of mitosis through its interactions with p34cdc2 in Schizosaccharomyces pombe. To characterize the kinase activity of p107wee1, its carboxyl-terminal catalytic domain was purified to homogeneity from overproducing insect cells. The apparent molecular mass of the purified protein(More)
The regulation of p34cdc2 was investigated by overproducing p34cdc2, cyclin (A and B) and the wee1+ gene product (p107wee1) using a baculoviral expression system. p34cdc2 formed a functional complex with both cyclins as judged by co-precipitation, phosphorylation of cyclin in vitro, and activation of p34cdc2 histone H1 kinase activity. Co-production of(More)
Both cyclins A and B associate with and thereby activate cyclin-dependent protein kinases (cdks). We have investigated which component in the cyclin-cdk complex determines its substrate specificity. The A- and B-type cyclin-cdk complexes phosphorylated histone H1 and their cyclin subunits in an indistinguishable manner, irrespective of the catalytic(More)
To determine how the human cdc25 gene product acts to regulate p34cdc2 at the G2 to M transition, we have overproduced the full-length protein (cdc25Hs) as well as several deletion mutants in bacteria as glutathione-S-transferase fusion proteins. The wild-type cdc25Hs gene product was synthesized as an 80-kDa fusion protein (p80GST-cdc25) and was judged to(More)
The cel (cellobiose utilization) operon of Escherichia coli K12 is not expressed in the wild-type organism. However, mutants that can express the operon and thereby utilize the beta-glucoside sugars cellobiose, arbutin and salicin are easily isolated. Two kinds of mutations are capable of activating the operon. The first involves mutations that allow the(More)
The kinase activity of human p34cdc2 is negatively regulated by phosphorylation at Thr-14 and Tyr-15. These residues lie within the putative nucleotide binding domain of p34cdc2. It has been proposed that phosphorylation within this motif ablates the binding of ATP to the active site of p34cdc2, thereby inhibiting p34cdc2 kinase activity (K. Gould and P.(More)
Human WEE1 (WEE1Hu) was cloned on the basis of its ability to rescue wee1+ mutants in fission yeast [Igarashi, M., Nagata, A., Jinno, S., Suto, K. & Okayama, H. (1991) Nature (London) 353, 80-83]. Biochemical studies carried out in vitro with recombinant protein demonstrated that WEE1Hu encodes a tyrosine kinase of approximately 49 kDa that phosphorylates(More)