Laurie K. Frankel

Learn More
This Minireview presents a summary of recent investigations examining the structure and functions of the Photosystem II chlorophyll-proteins CP47 and CP43, updating our previous review which appeared in 1990 (TM Bricker, Photosynth Res 24: 1–13). Since this time, numerous studies have clarified the roles of these chlorophyll-proteins within the photosystem.(More)
Site-directed mutagenesis was used to produce a Synechocystis mutant containing a histidine tag at the C terminus of the CP 47 protein of Photosystem II. This mutant cell line, designated HT-3, exhibited slightly above normal rates of oxygen evolution and appeared to accumulate somewhat more Photosystem II reaction centers than a control strain. A rapidly(More)
In this review the structure and function of the 33 kDa protein of Photosystem II is examined. Significant controversies exist concerning the solution secondary structure of the protein, the location of its binding site(s) within Photosystem II, the amino acid residues of the 33 kDa protein required for binding and its stoichiometry within the photosystem.(More)
Interfering RNA was used to suppress the expression of two genes that encode the manganese-stabilizing protein of photosystem II in Arabidopsis thaliana, MSP-1 (encoded by psbO-1, At5g66570), and MSP-2 (encoded by psbO-2, At3g50820). A phenotypic series of transgenic plants was recovered that expressed high, intermediate, and low amounts of these two(More)
Numerous studies over the last 25 years have established that the extrinsic PsbO, PsbP and PsbQ proteins of Photosystem II play critically important roles in maintaining optimal manganese, calcium and chloride concentrations at the active site of Photosystem II. Chemical or genetic removal of these components induces multiple and profound defects in(More)
A mutation was recovered in the slr0721 gene, which encodes the decarboxylating NADP(+)-dependent malic enzyme in the cyanobacterium Synechocystis sp. strain PCC 6803, yielding the mutant 3WEZ. Under continuous light, 3WEZ exhibits poor photoautotrophic growth while growing photoheterotrophically on glucose at rates nearly indistinguishable from wild-type(More)
Four novel Synechocystis sp. strain PCC 6803 genes (sll1495, sll0804, slr1306, and slr1125) which encode hypothetical proteins were determined by transposon mutagenesis to be required for optimal photoautotrophic growth. Mutations were also recovered in ccmK4, a carboxysome coat protein homologue, and me, the decarboxylating NADP(+)-dependent malic enzyme.(More)
The Photosystem II extrinsic proteins PsbO, PsbP, and PsbQ are required for efficient oxygen-evolving activity under physiological conditions. In this study, we have used fluorescence decay kinetics to quantitatively probe Photosystem II electron transport upon depletion of these components by standard salt washing protocols. Our results indicate that in(More)
The structural association of the spinach 33-kDa extrinsic protein of photosystem II with the membrane-bound components of the photosystem was investigated by labeling the 33-kDa extrinsic protein with the amino group-specific reagent N-hydroxysuccinimidobiotin both on NaCl-washed photosystem II membranes and free in solution. After quenching of the(More)
Interfering RNA was used to suppress the expression of the genes At1g06680 and At2g30790 in Arabidopsis thaliana, which encode the PsbP-1 and PsbP-2 proteins, respectively, of Photosystem II. A phenotypic series of transgenic plants was recovered that expressed intermediate and low amounts of PsbP. Earlier we had documented significant alterations in a(More)