Learn More
Dominant mutations of the Knotted-1 (Kn1) homeobox gene of maize alter the differentiation and growth of cells associated with leaf veins. By analyzing Kn1 transcripts and KN1 protein, we show that the gene is not expressed at high levels during the development of wild-type leaves. Instead, Kn1 is expressed in apical meristems of vegetative and floral(More)
The Arp2/3 complex, a highly conserved nucleator of F-actin polymerization, is essential for a variety of eukaryotic cellular processes, including epidermal cell morphogenesis in Arabidopsis thaliana. Efficient nucleation of actin filaments by the Arp2/3 complex requires the presence of an activator such as a member of the Scar/WAVE family. In mammalian(More)
The human DNA mismatch repair gene homologue hMSH2, on chromosome 2p is involved in hereditary non-polyposis colon cancer (HNPCC). On the basis of linkage data, a second HNPCC locus was assigned to chromosome 3p21-23 (ref. 3). Here we report that a human gene encoding a protein, hMLH1 (human MutL homologue), homologous to the bacterial DNA mismatch repair(More)
Plant cell shapes are defined by their surrounding walls, but microtubules and F-actin both play critical roles in cell morphogenesis by guiding the deposition of wall materials in expanding cells. Leaf epidermal cells have lobed shapes, which are thought to arise through a microtubule-dependent pattern of locally polarized growth. We have isolated a(More)
The cellular organization of plant tissues is determined by patterns of cell division and growth coupled with cellular differentiation. Cells proliferate mainly via symmetric division, whereas asymmetric divisions are associated with initiation of new developmental patterns and cell types. Division planes in both symmetrically and asymmetrically dividing(More)
Multiple disease resistance has important implications for plant fitness, given the selection pressure that many pathogens exert directly on natural plant populations and indirectly via crop improvement programs. Evidence of a locus conditioning resistance to multiple pathogens was found in bin 1.06 of the maize genome with the allele from inbred line(More)
The cytoskeleton plays important roles in plant cell shape determination by influencing the patterns in which cell wall materials are deposited. Cortical microtubules are thought to orient the direction of cell expansion primarily via their influence on the deposition of cellulose into the wall, although the precise nature of the microtubule-cellulose(More)
  • L G Smith
  • 2001
Plant cells are surrounded by walls that define their shapes and fix their positions with tissues. Consequently, establishment of a plant's cellular framework during development depends largely on the positions in which new walls are formed during cytokinesis. Experiments using various approaches are now building on classical studies to shed light on the(More)
BACKGROUND In premitotic plant cells, the future division plane is predicted by a cortical ring of microtubules and F-actin called the preprophase band (PPB). The PPB persists throughout prophase, but is disassembled upon nuclear-envelope breakdown as the mitotic spindle forms. Following nuclear division, a cytokinetic phragmoplast forms between the(More)
The product of the maize homeobox gene, knotted1 (kn1), localizes to the nuclei of cells in shoot meristems, but is absent from portions of the meristem where leaf primordia or floral organs initiate. Recessive mutant alleles of kn1 were obtained by screening for loss of the dominant leaf phenotype in maize. Mutant kn1 alleles carrying nonsense, splicing(More)