Lauri J Reuter

  • Citations Per Year
Learn More
Plant suspension cell cultures are emerging as an alternative to mammalian cells for production of complex recombinant proteins. Plant cell cultures provide low production cost, intrinsic safety and adherence to current regulations, but low yields and costly purification technology hinder their commercialization. Fungal hydrophobins have been utilized as(More)
Hydrophobin fusion technology has been applied in the expression of several recombinant proteins in plants. Until now, the technology has relied exclusively on the Trichoderma reesei hydrophobin HFBI. We screened eight novel hydrophobin tags, T. reesei HFBII, HFBIII, HFBIV, HFBV, HFBVI and Fusarium verticillioides derived HYD3, HYD4 and HYD5, for production(More)
Human interleukin-22 (IL-22) is a member of the IL-10 cytokine family that has recently been shown to have major therapeutic potential. IL-22 is an unusual cytokine as it does not act directly on immune cells. Instead, IL-22 controls the differentiation, proliferation and antimicrobial protein expression of epithelial cells, thereby maintaining epithelial(More)
Fusion to fungal hydrophobins has proven to be a useful tool to enhance accumulation and recovery of recombinant proteins in plants. Aqueous two-phase separation (ATPS) is an attractive system to capture hydrophobin fusion proteins from plant extracts. The process can simultaneously purify and concentrate target protein with minimal background. ATPS avoids(More)
Purification is a bottleneck and a major cost factor in the production of antibodies. We set out to engineer a bifunctional fusion protein from two building blocks, Protein A and a hydrophobin, aiming at low-cost and scalable antibody capturing in solutions. Immunoglobulin-binding Protein A is widely used in affinity-based purification. The hydrophobin(More)
The encapsulation of drugs to nanoparticles may offer a solution for targeted delivery. Here, we set out to engineer a self-assembling targeting ligand by combining the functional properties of human transferrin and fungal hydrophobins in a single fusion protein. We showed that human transferrin can be expressed in Nicotiana benthamiana plants as a fusion(More)
  • 1