Lauri Eklund

Learn More
Angiopoietins are ligands of the Tie2 receptor that control angiogenic remodeling in a context-dependent manner. Tie signaling is involved in multiple steps of the angiogenic remodeling process during development, including destabilization of existing vessels, endothelial cell migration, tube formation and the subsequent stabilization of newly formed tubes(More)
Type XV collagen occurs widely in the basement membrane zones of tissues, but its function is unknown. To understand the biological role of this protein, a null mutation in the Col15a1 gene was introduced into the germ line of mice. Despite the complete lack of type XV collagen, the mutant mice developed and reproduced normally, and they were(More)
The receptor tyrosine kinase Tie2, and its activating ligand Angiopoietin-1 (Ang1), are required for vascular remodelling and vessel integrity, whereas Ang2 may counteract these functions. However, it is not known how Tie2 transduces these different signals. Here, we show that Ang1 induces unique Tie2 complexes in mobile and confluent endothelial cells.(More)
Solid tumors require blood vessels for growth and dissemination, and lymphatic vessels as additional conduits for metastatic spread. The identification of growth factor receptor pathways regulating angiogenesis has led to the clinical approval of the first antiangiogenic molecules targeted against the vascular endothelial growth factor (VEGF)-VEGF receptor(More)
Mice lacking collagen XVIII and its proteolytically derived product endostatin show delayed regression of blood vessels in the vitreous along the surface of the retina after birth and lack of or abnormal outgrowth of retinal vessels. This suggests that collagen XVIII/endostatin is critical for normal blood vessel formation in the eye. All basement membranes(More)
We report on full-length mouse type XV collagen cDNAs that encode a 1367-residue alpha 1(XV) chain. The amino acid sequences of the mouse and previously characterized human alpha 1(XV) chains exhibit an overall identity of 72%. The highest homology between these chains and to the structurally related type XVIII collagen is observed in their C-terminal(More)
Germline substitutions in the endothelial cell tyrosine kinase receptor TIE2 (encoded by TEK) cause a rare, inherited form of venous anomaly known as a mucocutaneous venous malformation (VMCM; refs. 1, 2, 3 and V.W., N.L., M.U., A. Irrthum, L.M.B. et al., unpublished data). We identified a somatic 'second hit' causing loss of function of TIE2 in a resected(More)
Impaired angiogenesis has been implicated in adipose tissue dysfunction and the development of obesity and associated metabolic disorders. Here, we report the unexpected finding that vascular endothelial growth factor B (VEGFB) gene transduction into mice inhibits obesity-associated inflammation and improves metabolic health without changes in body weight(More)
Angiogenic growth factors have recently been linked to tissue metabolism. We have used genetic gain- and loss-of function models to elucidate the effects and mechanisms of action of vascular endothelial growth factor-B (VEGF-B) in the heart. A cardiomyocyte-specific VEGF-B transgene induced an expanded coronary arterial tree and reprogramming of(More)
The angiopoietin (Ang) growth factors and the endothelial Tie receptors regulate blood and lymphatic vessel development, and vascular permeability, inflammation, angiogenic remodeling and tumor vascularization in adult tissues. The angiopoietins activate the Tie receptors in unique in trans complexes at endothelial cell-cell and cell-matrix contacts. In(More)