Laurent Pueyo

Learn More
Small-angle coronagraphy is technically and scientifically appealing because it enables the use of smaller telescopes, allows covering wider wavelength ranges, and potentially increases the yield and completeness of circumstellar environment – exoplanets and disks – detection and characterization campaigns. However, opening up this new parameter space is(More)
We obtained spectra, in the wavelength range λ = 995−1769 nm, of all four known planets orbiting the star HR 8799. Using the suite of instrumentation known as Project 1640 on the Palomar 5-m Hale Telescope, we acquired data at two epochs. This allowed for multiple imaging detections of the companions and multiple extractions of low-resolution (R ∼ 35)(More)
We present an analysis of the orbital motion of the four sub-stellar objects orbiting HR8799. Our study relies on the published astrometric history of this system augmented with an epoch obtained with the Project 1640 coronagraph + Integral Field Spectrograph (IFS) installed at the Palomar Hale telescope. We first focus on the intricacies associated with(More)
We present a new method for numerical propagation through Lyot-style coronagraphs using finite occulting masks. Standard methods for coronagraphic simulations involve Fast Fourier Transforms (FFT) of very large arrays, and computing power is an issue for the design and tolerancing of coronagraphs on segmented Extremely Large Telescopes (ELT) in order to(More)
Project 1640, a high-contrast spectral-imaging effort involving a coordinated set of instrumentation and software, built at AMNH, JPL, Cambridge and Caltech, has been commissioned and is fully operational. This novel suite of instrumentation includes a 3388+241-actuator adaptive optics system, an optimized apodized pupil Lyot coronagraph, an integral field(More)
We describe a new instrument that forms the core of a long-term high contrast imaging program at the 200 inch (5 m) Hale Telescope at Palomar Observatory. The primary scientific thrust is to obtain images and lowresolution spectroscopy of brown dwarfs and young exoplanets of several Jupiter masses in the vicinity of stars within 50 pc of the Sun. The(More)
Directly detecting thermal emission from young extrasolar planets allows measurement of their atmospheric compositions and luminosities, which are influenced by their formation mechanisms. Using the Gemini Planet Imager, we discovered a planet orbiting the ~20-million-year-old star 51 Eridani at a projected separation of 13 astronomical units. Near-infrared(More)
The Gemini Planet Imager is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffraction-suppressing coronagraph, and an integral field spectrograph with low spectral resolution but high spatial resolution. Every aspect of the Gemini Planet Imager has(More)
The vortex coronagraph is one of the most promising coronagraphs for high-contrast imaging because of its simplicity, small inner working angle, high throughput, and clear off-axis discovery space. However, as with most coronagraphs, centrally obscured on-axis telescopes degrade contrast. Based on the remarkable ability of vortex coronagraphs to move light(More)
The past decade has seen a significant growth in research targeted at space-based observatories for imaging exosolar planets. The challenge is in designing an imaging system for high contrast. Even with a perfect coronagraph that modifies the point spread function to achieve high contrast, wavefront sensing and control is needed to correct the errors in the(More)