Laurent Nussaume

Learn More
A small organizing center, the quiescent center (QC), maintains stem cells in the Arabidopsis root and defines the stem cell niche. The phytohormone auxin influences the position of this niche by an unknown mechanism. Here, we identify the PLETHORA1 (PLT1) and PLT2 genes encoding AP2 class putative transcription factors, which are essential for QC(More)
Phosphorus, one of the essential elements for plants, is often a limiting nutrient because of its low availability and mobility in soils. Significant changes in plant morphology and biochemical processes are associated with phosphate (Pi) deficiency. However, the molecular bases of these responses to Pi deficiency are not thoroughly elucidated. Therefore, a(More)
AtHMA4 is an Arabidopsis thaliana P1B-ATPase which transports Zn and Cd. Here, we demonstrate that AtHMA4 is localized at the plasma membrane and expressed in tissues surrounding the root vascular vessels. The ectopic overexpression of AtHMA4 improved the root growth in the presence of toxic concentrations of Zn, Cd and Co. A null mutant exhibited a lower(More)
Plant roots are able to sense soil nutrient availability. In order to acquire heterogeneously distributed water and minerals, they optimize their root architecture. One poorly understood plant response to soil phosphate (P(i)) deficiency is a reduction in primary root growth with an increase in the number and length of lateral roots. Here we show that(More)
Abscisic acid (ABA) is a plant hormone which plays an important role in seed development and dormancy and in plant response to environmental stresses. An ABA-deficient mutant of Nicotiana plumbaginifolia, aba2, was isolated by transposon tagging using the maize Activator transposon. The aba2 mutant exhibits precocious seed germination and a severe wilty(More)
Plants adapt to different environmental conditions by constantly forming new organs in response to morphogenetic signals. Lateral roots branch from the main root in response to local auxin maxima. How a local auxin maximum translates into a robust pattern of gene activation ensuring the proper growth of the newly formed lateral root is largely unknown.(More)
TOR (target of rapamycin) protein kinases were identified in yeasts, mammals, and Drosophila as central controllers of cell growth in response to nutrient and growth factors. Here we show that Arabidopsis thaliana possesses a single TOR gene encoding a protein able to complex with yeast 12-kDa FK506-binding protein and rapamycin despite the insensitivity of(More)
Lateral root development occurs throughout the life of the plant and is responsible for the plasticity of the root system. In Arabidopsis thaliana, lateral root founder cells originate from pericycle cells adjacent to xylem poles. In order to study the mechanisms of lateral root development, a population of Arabidopsis GAL4-GFP enhancer trap lines were(More)
The early light-induced proteins (ELIPs) belong to the multigenic family of light-harvesting complexes, which bind chlorophyll and absorb solar energy in green plants. ELIPs accumulate transiently in plants exposed to high light intensities. By using an Arabidopsis thaliana mutant (chaos) affected in the posttranslational targeting of light-harvesting(More)
Higher plant nitrate reductases (NRs) carry an N-terminal domain whose sequence is not conserved in NRs from other organisms. A gene composed of a full-length tobacco NR cDNA with an internal deletion of 168 bp in the 5' end fused to the cauliflower mosaic virus 35S promoter and appropriate termination signals was constructed and designated as delta NR. An(More)