Laurent Julien Bouyer

Learn More
The goal of this study was to evaluate the role of hindpaw cutaneous feedback in the control of locomotion, by cutting some (in one cat) or all (in 2 cats) cutaneous nerves bilaterally at ankle level. Kinematic and electromyographic (EMG) recordings were obtained before and for several weeks after denervation during level and incline (15 degrees up and(More)
The goal of these experiments was to define the contribution of hindpaw cutaneous inputs in the expression of spinal locomotion in cats. In 3 cats, some (n = 1) or all (n = 2) cutaneous nerves were cut bilaterally at ankle level before spinalization. This denervation caused small deficits that were gradually compensated as reported in the companion study.(More)
After lateral gastrocnemius-soleus (LGS) nerve section in intact cats, a rapid locomotor compensation involving synergistic muscles occurs and is accompanied by spinal reflex changes. Only some of these changes are maintained after acute spinalization, indicating the involvement of descending pathways in functional recovery. Here, we address whether the(More)
Many patients are in pain when they receive gait training during rehabilitation. Based on animal studies, it has been proposed that central sensitization associated to nociception (maladaptive plasticity) and plasticity related to the sensorimotor learning (adaptive plasticity) share similar neural mechanisms and compete with each other. The aim of this(More)
In the cat, section of all cutaneous nerves of the hindfeet except the tibial (Tib) nerve supplying the plantar surface results in a long-lasting decrease in the intensity of Tib stimulation needed for a threshold response in flexor muscles and an increase in the amplitude of the phase-dependent responses recorded in various muscles during locomotion.(More)
The present paper reviews aspects of locomotor sensorimotor interactions by focussing on work performed in spinal cats. We provide a brief overview of spinal locomotion and describe the effects of various types of sensory deprivations (e.g. rhizotomies, and lesions of muscle and cutaneous nerves) to highlight the spinal neuroplasticity necessary for(More)
Human locomotion results from interactions between feedforward (central commands from voluntary and automatic drive) and feedback (peripheral commands from sensory inputs) mechanisms. Recent studies have shown that locomotion can be adapted when an external force is applied to the lower limb. To better understand the neural control of this adaptation, the(More)
Force field adaptation of locomotor muscle activity is one way of studying the ability of the motor control networks in the brain and spinal cord to adapt in a flexible way to changes in the environment. Here, we investigate whether the corticospinal tract is involved in this adaptation. We measured changes in motor-evoked potentials (MEPs) elicited by(More)
UNLABELLED Motor control studies have shown that when walking is performed while resisting a perturbation applied to the lower limb, the muscle activation pattern can be temporarily modified. The objective of the present study is to validate if such an approach, targeting the ankle, could specifically promote an increased activation of the ankle dorsiflexor(More)
Adapting to external forces during walking has been proposed as a tool to improve locomotion after central nervous system injury. However, sensorimotor integration during walking varies according to the timing in the gait cycle, suggesting that adaptation may also depend on gait phases. In this study, an ElectroHydraulic AFO (EHO) was used to apply forces(More)