Learn More
We describe an algorithm for point multiplication on generic ellip-tic curves, based on a representation of the scalar as a sum of mixed powers of 2 and 3. The sparseness of this so-called double-base number system, combined with some efficient point tripling formulae, lead to efficient point multiplication algorithms for curves defined over both prime and(More)
—Single and double scalar multiplications are the most computational intensive operations in elliptic curve based cryptosystems. Improving the performance of these operations is generally achieved by means of integer recoding techniques, which aim at minimizing the scalars' density of nonzero digits. The hybrid binary-ternary number system provides both(More)
Searching for similarities in large musical databases has become a common procedure. Local alignment methods, based on dynamic programming, explore all the possible matchings between two musical pieces; and as a result return the optimal local alignment. Unfortunately these very powerful methods have a very high computational cost. The exponential growth of(More)
—We present the first implementation of RSA in the Residue Number System (RNS) which does not require any conversion, either from radix to RNS beforehand or RNS to radix afterward. Our solution is based on an optimized RNS version of Montgomery multiplication. Thanks to the RNS, the proposed algorithms are highly parallelizable and seem then well suited to(More)
Leishmaniasis is a widespread parasitic disease principally treated by intravenous drugs. Hexadecylphosphocholine (miltefosine) has recently proved its efficacy by oral route. Although its mechanism of action has been investigated, and principally relies on perturbations of the metabolism of lipids and especially phospholipids, further studies need to be(More)
ÐThe aim of this paper is to accelerate division, square root, and square root reciprocal computations when the Goldschmidt method is used on a pipelined multiplier. This is done by replacing the last iteration by the addition of a correcting term that can be looked up during the early iterations. We describe several variants of the Goldschmidt algorithm,(More)
In SAC 2003, J. Chung and A. Hasan introduced a new class of specific moduli for cryptography, called the more generalized Mersenne numbers, in reference to J. Solinas' generalized Mersenne numbers proposed in 1999. This paper pursues the quest. The main idea is a new representation, called Modular Number System (MNS), which allows efficient implementation(More)
We propose an improved implementation of the SHA-2 hash family, with minimal operator latency and reduced hardware requirements. We also propose a high frequency version at the cost of only two cycles of latency per message. Finally we present a multi-mode architecture able to perform either a SHA-384 or SHA-512 hash or to behave as two independent SHA-224(More)
A recently introduced double-base number representation has proved to be successful in improving the performance of several algorithms in cryptography and digital signal processing. The index-calculus version of this number system can be regarded as a two-dimensional extension of the classical logarithmic number system. This paper builds on previous special(More)