Learn More
Modern sugarcane (Saccharum spp.) is an important grass that contributes 60% of the raw sugar produced worldwide and has a high biofuel production potential. It was created about a century ago through hybridization of two highly polyploid species, namely S. officinarum and S. spontaneum. We investigated genome dynamics in this highly polyploid context by(More)
Sugarcane cultivars are polyploid, aneuploid, interspecific hybrids between the domesticated species Saccharum officinarum and the wild relative S. spontaneum. Cultivar chromosome numbers range from 100 to 130 with approximately 10% contributed by S. spontaneum. We have undertaken a mapping study on the progeny of a selfed cultivar, R570, to analyze this(More)
Inheritance of resistance to rust was investigated in the self progeny of the sugarcane cultivar 'R570' also used to build a RFLP genetic map. Resistance was evaluated through both field and controlled greenhouse trials. A clear-cut 3 (resistant) ∶ 1 (susceptible) segregation indicative of a probable dominant resistant gene was observed. This is the first(More)
To contribute to our understanding of the genome complexity of sugarcane, we undertook a large-scale expressed sequence tag (EST) program. More than 260,000 cDNA clones were partially sequenced from 26 standard cDNA libraries generated from different sugarcane tissues. After the processing of the sequences, 237,954 high-quality ESTs were identified. These(More)
The genome of modern sugarcane cultivars is highly polyploid (approximately 12x), aneuploid, of interspecific origin, and contains 10 Gb of DNA. Its size and complexity represent a major challenge for the isolation of agronomically important genes. Here we report on the first attempt to isolate a gene from sugarcane by map-based cloning, targeting a durable(More)
The presence of a major resistance gene (Bru1) for brown rust in the sugarcane cultivar R570 (2n about 115) was confirmed by analyzing segregation of rust resistance in a large population of 658 individuals, derived from selfing of clone R570. A subset of this population was analyzed with AFLP and bulked segregant analysis (BSA) to develop a detailed(More)
Molecular markers were used to characterise sugarcane intergeneric hybrids between S. officinarum and E. arundinaceus. Very simple diagnostic tools for hybrid identification among the progeny were derived from isozyme electrophoresis and a sequence-tagged PCR. Two enzyme systems (GOT and MDH B) and PCR amplification revealing spacer-size variation in the(More)
In the past few years, approaches such as molecular cytogenetics and the use of molecular markers have permitted significant advances in the establishment of the evolutionary origin and genome structure of sugarcane, an important polyploid crop. The availability of new resources, such as a bacterial artificial chromosome library and a huge collection of(More)
Expressed sequence tags (ESTs) have proven to be a valuable tool to discover single nucleotide polymorphism (SNP) in human genes but their use for this purpose is still limited in higher plants. Using a database of approximately 250,000 sugarcane ESTs we have recovered 219 sequences encoding alcohol dehydrogenases ( Adh), which tagged 178 distinct cDNAs(More)
Fruit firmness in tomato (Solanum lycopersicum) is determined by a number of factors including cell wall structure, turgor, and cuticle properties. Firmness is a complex polygenic trait involving the coregulation of many genes and has proved especially challenging to unravel. In this study, a quantitative trait locus (QTL) for fruit firmness was mapped to(More)