Laurent Ador

  • Citations Per Year
Learn More
Previous sequence analyses have suggested the existence of two distinct classes of aminoacyl-tRNA synthetase. The partition was established on the basis of exclusive sets of sequence motifs (Eriani et al. [1990] Nature 347:203–306). X-ray studies have now well defined the structural basis of the two classes: the class I enzymes share with dehydrogenases and(More)
The active site of yeast aspartyl-tRNA synthetase has been characterised by structural and functional approaches. However, residues or structural elements that indirectly contribute to the active site organisation have still to be described. They have not been assessed by simple analysis of structural data or site-directed mutagenesis analysis, since(More)
Aminoacyl-tRNA synthetases contain one or three Mg(2+) ions in their catalytic sites. In addition to their role in ATP binding, these ions are presumed to play a role in catalysis by increasing the electropositivity of the alpha-phosphate and stabilizing the pentavalent transition state. In the class II aaRS, two highly conserved carboxylate residues have(More)
  • 1