Laurence Veronique Bindschedler

Learn More
The oxidative burst, the generation of reactive oxygen species (ROS) in response to microbial pathogen attack, is a ubiquitous early part of the resistance mechanisms of plant cells. It has also become apparent from the study of a number of plant-pathogen interactions and those modelled by elicitor treatment of cultured cells that there may be more than one(More)
The oxidative burst is an early response to pathogen attack leading to the production of reactive oxygen species (ROS) including hydrogen peroxide. Two major mechanisms involving either NADPH oxidases or peroxidases that may exist singly or in combination in different plant species have been proposed for the generation of ROS. We identified an Arabidopsis(More)
To further our understanding of powdery mildew biology during infection, we undertook a systematic shotgun proteomics analysis of the obligate biotroph Blumeria graminis f. sp. hordei at different stages of development in the host. Moreover we used a proteogenomics approach to feed information into the annotation of the newly sequenced genome. We analyzed(More)
We have developed a general method for multiplexed quantitative proteomics using differential metabolic stable isotope labeling and mass spectrometry. The method was successfully used to study the dynamics of heat-shock response in Arabidopsis thaliana. A number of known heat-shock proteins were confirmed, and some proteins not previously associated with(More)
Powdery mildews are phytopathogens whose growth and reproduction are entirely dependent on living plant cells. The molecular basis of this life-style, obligate biotrophy, remains unknown. We present the genome analysis of barley powdery mildew, Blumeria graminis f.sp. hordei (Blumeria), as well as a comparison with the analysis of two powdery mildews(More)
The utility of plant secondary cell wall biomass for industrial and biofuel purposes depends upon improving cellulose amount, availability and extractability. The possibility of engineering such biomass requires much more knowledge of the genes and proteins involved in the synthesis, modification and assembly of cellulose, lignin and xylans. Proteomic data(More)
Obligate biotrophic pathogens of plants must circumvent or counteract defenses to guarantee accommodation inside the host. To do so, they secrete a variety of effectors that regulate host immunity and facilitate the establishment of pathogen feeding structures called haustoria. The barley powdery mildew fungus Blumeria graminis f. sp. hordei produces a(More)
The pathway from UDP-glucose to UDP-xylose has been characterised in differentiating tobacco tissue. A xylogenic suspension cell culture of tobacco has been used as a source for the purification of the enzymes responsible for the oxidation of UDP-glucose to UDP-glucuronic acid and its subsequent decarboxylation to UDP-xylose. Protein purification and(More)
Blumeria graminis is an economically important obligate plant-pathogenic fungus, whose entire genome was recently sequenced and manually annotated using ab initio in silico predictions (Spanu et al. 2010, Science 330, 1543-1546). Employing large scale proteogenomic analysis we are now able to verify independently the existence of proteins predicted by ∼24%(More)
The present understanding of ROS generation in the defence response of Arabidopsis thaliana is reviewed. Evidence suggests that the apoplastic oxidative burst generated during basal resistance is peroxidase-dependent. The ROS generated during this basal resistance may serve to activate NADPH oxidase during the R-gene-mediated hypersensitive response. The(More)