Learn More
Previous studies have shown that detection of cytomegalovirus (CMV) DNA in plasma is less sensitive than the antigenemia assay for CMV surveillance in blood. In 1,983 blood samples, plasma PCR assays with three different primer sets (UL125 alone, UL126 alone, and UL55/UL123-exon 4) were compared to the pp65 antigenemia assay and blood cultures. Plasma PCR(More)
Following acute infection, herpes simplex virus (HSV) establishes latency in sensory neurons, from which it can reactivate and cause recurrent disease. Available antiviral therapies do not affect latent viral genomes; therefore, they do not prevent reactivation following therapy cessation. One possible curative approach involves the introduction of DNA(More)
Among hematopoietic stem-cell transplant (HSCT) recipients, cytomegalovirus (CMV) disease before engraftment is rare but often fatal, and cell-based diagnostic tests have low sensitivity in this clinical setting. We used the quantitative real-time polymerase chain reaction (PCR) assay to test for CMV DNA in plasma samples from 15 HSCT recipients who(More)
Human cytomegalovirus (HCMV) infection of a cell containing latent Kaposi's sarcoma-associated herpesvirus (KSHV) results in the activation of KSHV lytic replication and the production of infectious virus. In this study, we examined the HCMV genes identified as having a role in the activation of HCMV early genes for their ability to activate KSHV lytic(More)
A large portion of the global population carries latent herpes simplex virus (HSV), which can periodically reactivate, resulting in asymptomatic shedding or formation of ulcerative lesions. Current anti-HSV drugs do not eliminate latent virus from sensory neurons where HSV resides, and therefore do not eliminate the risk of transmission or recurrent(More)
The introduction of real-time monitoring of the polymerase chain reaction (PCR) represents a major breakthrough in specific nucleic acid quantification. This technique employs fluorescent intercalating agents or sequence-specific reporter probes to measure the concentration of amplified products after each PCR cycle. However, the need for optical components(More)
  • 1